A Study on Generalized Fibonacci Numbers: Sum Formulas $\sum_{k=0}^{n}kx^{k}W_{k}^{3}$ and $\sum_{k=1}^{n}kx^{k}W_{-k}^{3}$ for the Cubes of Terms

  • Yüksel Soykan Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
Keywords: Fibonacci numbers, Lucas numbers, Pell numbers, Jacobsthal numbers, sum formulas

Abstract

In this paper, closed forms of the sum formulas $\sum_{k=0}^{n}kx^{k}W_{k}^{3}$ and $\sum_{k=1}^{n}kx^{k}W_{-k}^{3}$ for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers.

References

Z. Čerin, Formulae for sums of Jacobsthal-Lucas numbers, Int. Math. Forum 2(40) (2007), 1969-1984. https://doi.org/10.12988/imf.2007.07178

Z. Čerin, Sums of squares and products of Jacobsthal numbers, Journal of Integer Sequences 10 (2007), Article 07.2.5.

L. Chen and X. Wang, The power sums involving Fibonacci polynomials and their applications, Symmetry 11 (2019), 635. https://doi.org/10.3390/sym11050635

R. Frontczak, Sums of powers of Fibonacci and Lucas numbers: A new bottom-up approach, Notes on Number Theory and Discrete Mathematics 24(2) (2018), 94-103. https://doi.org/10.7546/nntdm.2018.24.2.94-103

R. Frontczak, Sums of cubes over odd-index Fibonacci numbers, Integers 18 (2018).

A. Gnanam and B. Anitha, Sums of squares Jacobsthal numbers, IOSR Journal of Mathematics 11(6) (2015), 62-64.

A. F. Horadam, A generalized Fibonacci sequence, American Mathematical Monthly 68 (1961), 455-459. https://doi.org/10.1080/00029890.1961.11989696

A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quarterly 3.3 (1965), 161-176.

A. F. Horadam, Special properties of the sequence $w_{n}(a,b;p,q)$, Fibonacci Quarterly 5(5) (1967), 424-434.

A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437-446. https://doi.org/10.1215/S0012-7094-65-03244-8

E. Kiliҫ and D. Taşҫi, The linear algebra of the Pell matrix, Boletín de la Sociedad Matemática Mexicana 3(11) (2005).

E. Kiliҫ, Sums of the squares of terms of sequence ${u_{n}}$, Proc. Indian Acad. Sci. (Math. Sci.) 118(1) (2008), 27-41. https://doi.org/10.1007/s12044-008-0003-y

H. Prodinger, Sums of powers of Fibonacci polynomials, Proc. Indian Acad. Sci. (Math. Sci.) 119(5) (2009), 567-570. https://doi.org/10.1007/s12044-009-0060-x

H. Prodinger and S. J. Selkirk, Sums of squares of tetranacci numbers: a generating function approach, 2019. http://arxiv.org/abs/1906.08336v1.

Z. Raza, M. Riaz and M. A. Ali, Some inequalities on the norms of special matrices with generalized tribonacci and generalized Pell-Padovan sequences, 2015. http://arxiv.org/abs/1407.1369v2

R. Schumacher, How to sum the squares of the Tetranacci numbers and the Fibonacci m-step numbers, Fibonacci Quarterly 57 (2019), 168-175.

N. J. A. Sloane, The on-line encyclopedia of integer sequences. Available: http://oeis.org/

Y. Soykan, Closed formulas for the sums of squares of generalized Fibonacci numbers, Asian Journal of Advanced Research and Reports 9(1) (2020), 23-39. https://doi.org/10.9734/ajarr/2020/v9i130212

Y. Soykan, Closed formulas for the sums of cubes of generalized Fibonacci numbers: Closed formulas of and $sum_{k=0}^{n}W_{k}^{3}$ and $sum_{k=1}^{n}W_{-k}^{3}$, Archives of Current Research International 20(2) (2020), 58-69. https://doi.org/10.9734/acri/2020/v20i230177

Y. Soykan, A closed formula for the sums of squares of generalized tribonacci numbers, Journal of Progressive Research in Mathematics 16(2) (2020), 2932-2941.

Y. Soykan, A study on sums of cubes of generalized Fibonacci numbers: Closed formulas of $sum_{k=0}^{n}x^{k}W_{k}^{3}$ and $sum_{k=1}^{n}x^{k}W_{-k}^{3}$, Preprints 2020, 2020040437. https://10.20944/preprints202004.0437.v1

Y. Soykan, On sums of cubes of generalized Fibonacci numbers: Closed formulas of $ sum_{k=0}^{n}kW_{k}^{3}$ and $sum_{k=1}^{n}kW_{-k}^{3}$ , Asian Research Journal of Mathematics 16(6) (2020), 37-52. https://doi.org/10.9734/arjom/2020/v16i630196

Wamiliana, Suharsono and P. E. Kristanto, Counting the sum of cubes for Lucas and Gibonacci numbers, Science and Technology Indonesia 4(2) (2019), 31-35. https://doi.org/10.26554/sti.2019.4.2.31-35

Published
2020-06-15
How to Cite
Soykan, Y. (2020). A Study on Generalized Fibonacci Numbers: Sum Formulas $\sum_{k=0}^{n}kx^{k}W_{k}^{3}$ and $\sum_{k=1}^{n}kx^{k}W_{-k}^{3}$ for the Cubes of Terms. Earthline Journal of Mathematical Sciences, 4(2), 297-331. https://doi.org/10.34198/ejms.4220.297331
Section
Articles