A Study on Generalized Jacobsthal-Padovan Numbers
Abstract
In this paper, we investigate the generalized Jacobsthal-Padovan sequences and we deal with, in detail, four special cases, namely, Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan sequences. We present Binet’s formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.
References
I. Bruce, A modified Tribonacci sequence, Fibonacci Quart. 22(3) (1984), 244-246.
M. Catalani, Identities for Tribonacci-related sequences, arXiv:math/0209179, 2012.
E. Choi, Modular tribonacci numbers by matrix method, Journal of the Korean Mathematical Education Society Series B: Pure and Applied Mathematics 20(3) (2013), 207-221. https://doi.org/10.7468/jksmeb.2013.20.3.207
Ö. Deveci, The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups, Util. Math. 98 (2015), 257-270.
Ö. Deveci, The Jacobsthal-Padovan p-sequences and their applications, Proc. Rom. Acad. Ser. A 20(3) (2019), 215-224.
M. Elia, Derived sequences, the Tribonacci recurrence and cubic forms, Fibonacci Quart. 39(2) (2001), 107-115.
M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22(3) (1984), 204-207.
F.T. Howard and F. Saidak, Zhou's theory of constructing identities, Congr. Numer. 200 (2010), 225-237.
D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20(1) (1982), 73-76.
E. Kiliҫ and P. Stanica, A matrix approach for general higher order linear recurrences, Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011), 51-67.
P.Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quart. 26 (1988), 131-134.
S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quart. 26(2) (1988), 144-151.
A. Scott, T. Delaney and V. Hoggatt, Jr., The Tribonacci sequence, Fibonacci Quart. 15(3) (1977), 193-200.
A. Shannon, Tribonacci numbers and Pascal's pyramid, Fibonacci Quart. 15(3) (1977), pp. 268 and 275.
N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
Y. Soykan, Summing formulas for generalized Tribonacci numbers, Universal Journal of Mathematics and Applications 3(1) (2020), 1-11. https://doi.org/10.32323/ujma.637876
Y. Soykan, Simson identity of generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. Mech. 7(2) (2019), 45-56.
Y. Soykan, Tribonacci and Tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74. https://doi.org/10.3390/math7010074
W. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart. 20 (1982), 118-120.
C.C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart. 10(3) (1972), 231-246.
N. Yilmaz and N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci. 8(39) (2014), 1947-1955. https://doi.org/10.12988/ams.2014.4270
This work is licensed under a Creative Commons Attribution 4.0 International License.