Fekete-Szegö Problem for Certain New Family of Bi-Univalent Functions
Abstract
In current effort, by making use of the principle of subordination, we introduce and study a new family of holomorphic and bi-univalent functions which are defined in open unit disk and solve Fekete-Szegö problem for functions which belong to this family.
References
C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. 2020, Art. ID 7391058, 8 pp. https://doi.org/10.1155/2020/7391058
A. G. Al-Amoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, Malaya J. Mat. 7 (2019), 618-624. https://doi.org/10.26637/MJM0704/0003
R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevic functions of order ϑ+iδ associated with (p,q)-Lucas polynomials, AIMS Mathematics 6(5) (2021), 4296-4305. https://doi.org/10.3934/math.2021254
S. Altinkaya and S. Yalçin, Fekete-Szegö inequalities for certain classes of bi-univalent functions, International Scholarly Research Notices 2014, Art. ID 327962, 6 pp. https://doi.org/10.1155/2014/327962
S. Altinkaya and S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces 2015, Art. ID 145242, 5 pp. https://doi.org/10.1155/2015/145242
D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31(2) (1986), 70-77.
S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (2016), 1567-1575. https://doi.org/10.2298/FIL1606567B
M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (2017), 694-706. https://doi.org/10.3906/mat-1602-25
M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (2013), 1165-1171. https://doi.org/10.2298/FIL1307165C
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
H. O. Guney, G. Murugusundaramoorthy and J. Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae Math. 10 (2018), 70-84. https://doi.org/10.2478/ausm-2018-0006
X. F. Li and A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum 7(2) (2012), 1495-1504.
N. Magesh and V. Prameela, Coefficient estimate problems for certain subclasses of analytic and bi-univalent functions, Afr. Mat. 26(3) (2013), 465-470. https://doi.org/10.1007/s13370-013-0220-0
E. P. Mazi and T. O. Opoola, On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions, General Mathematics 25 (2017), 85-95.
H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Filomat 29 (2015), 1259-1267. https://doi.org/10.2298/FIL1506259O
Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc. 44(1) (2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics 8 (2020), Art. ID 172. https://doi.org/10.3390/math8020172
H. M. Srivastava, A. K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry 13 (2021), Art. ID 1230. https://doi.org/10.3390/sym13071230
D. K. Thomas, On the coefficients of Gamma-starlike functions, J. Korean Math. Soc. 55(1) (2018), 175-184.
A. K. Wanas, New families of bi-univalent functions governed by Gegenbauer polynomials, Earthline J. Math. Sci. 7(2) (2021), 403-427. https://doi.org/10.34198/ejms.7221.403427
P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 169-178. https://doi.org/10.36045/bbms/1394544302
This work is licensed under a Creative Commons Attribution 4.0 International License.