Dinitro-[1H,4H]-dihydropyrazines - A DFT treatment
Abstract
Dinitro-(1H,4H)-dihydropyrazine isomers and the 1,3- and 1,5-proton tautomers of these isomers are considered within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). All the structures are electronically stable, thermodynamically exothermic and have favorable Gibbs’ free energy of formation values at the standard states. Various quantum chemical properties, including IR and UV-VIS spectra, the HOMO and LUMO energies etc., have been obtained and discussed. The NICS values have been calculated for the antiaromaticity order of the isomers considered.
References
Paquette, L.A., Kuhls, D.E., Barrett, J.H., & Leichter, L.M. (1969). Unsaturated heterocyclic systems. LV. Cycloaddition reactions of derivatives of 1H-azepine. J. Org. Chem., 34, 2888-2896. https://doi.org/10.1021/jo01262a018
Schroder, G. (1956). Cyclooctatetraene, Weinheim/Bergstr., Germany: Verlag Chemie.
Chen, S-J, & Fowler, F.W. (1970). Structures of alleged 1,4-dihydropyrazines. J. Org. Chem., 56(11), 3987- 3989. https://doi.org/10.1021/jo00836a100
Mason, A.T., & Winder, G.R. (1893). Syntheses of piazine derivatives. Interaction of benzylamine and phenacyl bromide. J. Chem. Soc., 63, 1355-1375. https://doi.org/10.1039/ct8936301355
Brook, D.J.R., Noll, B.C., & Koch, T.H. (1998). Carbonyl and thiocarbonyl stabilized 1,4-dihydropyrazines: synthesis and characterization. J. Chem. Soc., Perkin Trans. 1, 289-292. https://doi.org/10.1039/A705391F
Fourrey, J-L. (1987). Preparation of stable 1,4-dihydropyrazines. J. Chem. Soc. Perkin Trans. I, 1841-1843. https://doi.org/10.1039/P19870001841
Vernin, G.( ed.). (1982). Chemistry of heterocyclic compounds in flavours and aromas, New York: Wiley & Sons.
Richards, G.J., & Hill, J.P. (2021). The pyrazinacenes. Acc. Chem. Res., 54(16), 3228- 3240. https://doi.org/10.1021/acs.accounts.1c00315
Lown, J.W., Akhtar, M.H., & McDaniel, R.S. (1974). Stereochemistry and mechanism of the thermal [1,3] alkyl shift of stable 1,4-dialkyl-1,4-dihydropyrazines. J. Org. Chem., 39(14), 1998-2006. https://doi.org/10.1021/jo00928a004
Duan, X., Xin, H., & Yan, H. (2014). Design, synthesis, and biological evaluation of 1,4-diaryl-1,4-dihydropyrazines as novel 11β-HSD1 inhibitors. Biol. Pharm. Bull., 37(5), 840-846. https://doi.org/10.1248/bpb.b14-00070
Ito, S., Takechi, H., Nakahara, K., Kashige, N., &Yamaguchi, T. (2010). Phenyl- substituted dihydropyrazines with DNA strand-breakage activity. Chem. Pharm. Bull., 58(6), 825-828. https://doi.org/10.1248/cpb.58.825
Takechi, S., Yamaguchi, T., Nomura, H., Minematsu, T., Adachi, M., Kurata, H., & Kurata, R. (2006). Mutation spectrum induced by dihydropyrazines in Escherichia coli. Biol. Pharm. Bull., 29(1), 17-20. https://doi.org/10.1248/bpb.29.17. PMID: 16394502.
Suresh, C.H., & Rakhi, R. (2016). A DFT study on dihydropyrazine annulated linear polyacenes: aromaticity, stability and homo-lumo energy modulation. Phys. Chem. Chem. Phys., 18, 24631-24641. https://doi.org/10.1039/C6CP03723B
Sun, C-L, Luo, X-E, Xu, H., Song, Q-W, Fan, Z-P, Wang, X-Z, Cao, J-J, Shi, Z-F, & Zhang, H-L. (2020). Aromaticity and tautomerism of a 4n π electron dihydrohexaazapentacene. Org. Chem. Front., 7, 405-413. https://doi.org/10.1039/c9qo01285k
Vlček, P., Havlas, Z., & Pavlíček, Z. (1999). Are 1,4-dihydropyrazines antiaromatic? Ab initio study of 1,4-dihydropyrazines and their tetrahydro derivatives. Collect. Czech. Chem. Commun., 64, 633-648. https://doi.org/10.1135/cccc19990633
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling (2nd ed.). Longman, Essex.
Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, 133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev., B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
PARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E
Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A
Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+
Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.
This work is licensed under a Creative Commons Attribution 4.0 International License.