DFT Treatment of ANTA and Some of its Tautomers

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: ANTA, ANT, 3‐amino‐5-nitro‐1,2,4‐triazole, explosive, tautomerism, NICS

Abstract

An insensitive explosive material, ANTA, and some of its prototropic tautomers have been considered within the constraints of density functional theory at the levels of B3LYP/6-311++G(d,p) and B3LYP/cc-PVTZ (partly). Various energetic, quantum chemical and spectral properties have been obtained and discussed. The NICS(0) values have been obtained and contemplated on them.

References

J.P. Agrawal, High Energy Materials, Weinheim: Wiley-VCH, 2010. https://doi.org/10.1002/9783527628803

K.Y. Lee, C.B. Storm, M.A. Hiskey and M.D. Coburn, An improved synthesis of 5-amino-3-nitro-1H-1,2,4-triazole (ANTA), a useful intermediate for the preparation of insensitive high explosives, J. Energ. Mat. 9(5) (1991), 415-428. https://doi.org/10.1080/07370659108019382

R.L. Simpson, P.F. Pagoria, A.R. Mitchell and C.L. Coon, Synthesis, properties and performance of the high explosive ANTA, Prop. Explos. Pyrotech. 19 (1994), 174-179. https://doi.org/10.1002/prep.19940190405

T.D. Manship, D.M. Smith and D.G. Piercey, An improved synthesis of the insensitive energetic material 3-amino-5-nitro-1,2,4-triazole (ANTA), Prop. Explos. Pyrotech. 45(10) (2020), 1621-1626. https://doi.org/10.1002/prep.202000097

J.F. Moxnes, Ø. Frøyland and T. Risdal, A computational study of ANTA and NTO derivatives, Journal of Molecular Modeling 23(8) (2017), 240. https://doi.org/10.1007/s00894-017-3408-7

L. Türker, Effect of electric field on anta, Earthline Journal of Chemical Sciences 5(2) (2021), 329-345. https://doi.org/10.34198/ejcs.5221.329345

J.J.P. Stewart, Optimization of parameters for semi empirical methods I, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J.J.P. Stewart, Optimization of parameters for semi empirical methods II, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A.R. Leach, Molecular Modeling, Essex: Longman, 1997.

W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C.Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

O. Reutov, Theoretical Principles of Organic Chemistry, Moscow: Mir Pub, 1970.

V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A.D. Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry 12(5) (2019), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326

V.I. Minkin, M.N. Glukhovtsev and B.Y. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, New York: Wiley, 1994.

P.R. Schleyer and H. Jiao, What is aromaticity?, Pure Appl. Chem. 68 (1996), 209-218. DOI: https://doi.org/10.1351/pac199668020209

M.N. Glukhovtsev, Aromaticity today: energetic and structural criteria, J. Chem Educ. 74 (1997), 132-136. https://doi.org/10.1021/ed074p132

T.M. Krygowski, M.K. Cyranski, Z. Czarnocki, G. Hafelinger and A.R. Katritzky, Aromaticity: a theoretical concept of immense practical importance, Tetrahedron 56 (2000), 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5

P.R. Schleyer, Introduction: Aromaticity, Chem Rev. 101 (2001), 1115-1118. https://doi.org/10.1021/cr0103221

M.K. Cyranski, T.M. Krygowski, A.R. Katritzky and P.R. Schleyer, To what extent can aromaticity be defined uniquely?, J. Org. Chem. 67 (2002), 1333-1338. https://doi.org/10.1021/jo016255s

P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R.E. Hommes, Nucleus- independent chemical shifts: A simple and efficient aromaticity probe, J. Am. Chem. Soc. 118 (1996), 6317-6318. doi: 10.1021/ja960582d.

H. Jiao and P.R. Schleyer, Aromaticity of pericyclic reaction transition structures: magnetic evidence, J. Phys. Org. Chem. 11 (1998), 655-662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2U

P.R. Schleyer, B. Kiran, D.V. Simion and T.S. Sorensen, Does Cr(CO)3 complexation reduce the aromaticity of benzene?, J. Am. Chem. Soc. 122 (2000), 510-513. https://doi.org/10.1021/ja9921423

D. Quinonero, C. Garau, A. Frontera, P. Ballaster, A. Costa and P.M. Deya, Quantification of aromaticity in oxocarbons: The problem of the fictitious “nonaromatic” reference system, Chem. Eur. J. 8 (2002), 433-438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T

S. Patchkovskii and W. Thiel, Nucleus-independent chemical shifts from semiempirical calculations, J. Mol. Model. 6 (2002), 67-75. https://doi.org/10.1007/PL00010736

Published
2021-04-27
How to Cite
Türker, L. (2021). DFT Treatment of ANTA and Some of its Tautomers . Earthline Journal of Chemical Sciences, 6(1), 23-36. https://doi.org/10.34198/ejcs.6121.2336
Section
Articles