A Composite of NTO and TNAZ-A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: NTO, TNAZ, explosive, composite, DFT


NTO and TNAZ are two important explosive materials. In the present study, 1:1 molar composite of them are investigated within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). Certain quantum chemical, physicochemical and spectral properties of the composite have been harvested and compared with the respective values of its components. The formation of composite is exothermic and favorable. The components in the composite undergo certain type of interaction to affect properties of each other.


O. Yuxiang, C. Boren, L. Jiarong, D. Shuan, L. Jianjuan and J. Huiping, Synthesis of nitro derivatives of triazoles, Heterocycles 38 (1994), 1651-1664. https://doi.org/10.3987/REV-93-SR21

E.F. Rothgery, D.E. Audette, R.C. Wedlich and D.A. Csejka, The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and accelerating rate calorimetry (ARC), Thermochim. Acta 185(2) (1991), 235-243. https://doi.org/10.1016/0040-6031(91)80045-K

B.C. Beard and J. Sharma, Early decomposition chemistry of NTO (3-nitro-1,2,4-triazol- 5-one), J. Energ. Mater. 11(4-5) (1993), 325-343. https://doi.org/10.1080/07370659308019715

Y. Xie, R. Hu, X. Wang, X. Fu and C. Zhunhua, Thermal behavior of 3-nitro-1,2,4-triazol-5-one and its salts, Thermochim. Acta 189 (1991), 283-296. https://doi.org/10.1016/0040-6031(91)87126-H

V.W. Manchot and R. Noll, Triazole derivatives, Justus Liebigs Ann. Chem. 343 (1905), 1-27. https://doi.org/10.1002/jlac.19053430102

C.F. Kroger, R. Mietchen, H. Fank, M. Siemer and S. Pilz, 1,2,4-Triazoles. XVII. Nitration and bromination of 1,2,4-triazolinones, Chem. Ber. 102 (1969), 755-766.

Y.M. Wang, C. Chen and S.T. Lin, Theoretical studies of the NTO unimolecular decomposition, J. Mol. Struct. (THEOCHEM) 460 (1999), 79-102. https://doi.org/10.1016/s0166-1280(98)00308-x

L. Türker and T. Atalar, Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4- triazol-3-one (NTO) and some of its constitutional isomers, J. Hazard Mat. A 137 (2006), 1333-1344. https://doi.org/10.1016/j.jhazmat.2006.05.015

V.L. Zbarskii, V.V. Kuz’min and N.V. Yudin, Synthesis and properties of 1-nitro-4,5- dihydro-1H-1,2,4-triazol-5-one, Russ. J. Org. Chem. 40(7) (2004), 1069-1070. https://doi.org/10.1023/B:RUJO.0000045209.00477.56

C. Meredith, T.P. Russell, R.C. Mowrey and J.R. McDonald, Decomposition of 5- nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): energetics associated with several proposed initial routes, J. Phys. Chem. A 102 (1998), 471-477. https://doi.org/10.1021/jp972602j

L. Türker, Nitramine Derivatives of NTO - A DFT study, Earthline Journal of Chemical Sciences 1(1) (2019), 45-63. https://doi.org/10.34198/ejcs.1119.4563

K.Y. Lee and M.D. Coburn, 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive, Report No. LA-10302-MS, Order No. DE86009787, 1985, 7 pp.

D.C. Sorescu, T.R.L. Sutton, D.L. Thompson, D. Beardallm and C.A. Wight, Theoretical and experimental studies of the structure and vibrational spectra of NTO, J. Mol. Struct. 384 (1996), 87-99. https://doi.org/10.1016/S0022-2860(96)09343-X

E.A. Zhurova and A.A. Pinkerton, Chemical bonding in energetic materials: -NTO, Acta Cryst. B57 (2001), 359- 365. https://doi.org/10.1107/s0108768100020048

N. Bolotina, K. Krischbaum and A.A. Pinkerton, Energetic materials: -NTO crystallizes as a four-component triclinic twin, Acta Cryst. B61 (2005), 577-584. https://doi.org/10.1107/s0108768105022792

K.Y. Lee and R. Gilardi, NTO polymorphs, in: Proc. Materials Research Soc. Symp., vol. 296, Proc. Materials Research Soc. Symp., Structure and Properties of Energetic Materials 296 (1993), 237-242.

P.F. Pagoria, G.S. Lee, R.A. Mitchell and R.D Schmidt, A review of energetic materials synthesis, Thermochim. Acta 384 (2002), 187-204. https://doi.org/10.1016/S0040-6031(01)00805-X

H.S. Jadhav, M.B. Talawar, D.D. Dhavale, S.N. Asthana and V.V. Krishnamurthy, Alternate method to synthesis of 1,3,3-trinitroazetedine (TNAZ): Next generation melt castable high energy material, Indian J. Chem. Technol. 13 (2006), 41-46. http://nopr.niscair.res.in/handle/123456789/8455

T.G. Archibald, R. Gilardi, K. Baum and C.J. George, Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine, J. Org. Chem. 55 (1990), 2920-2924. https://doi.org/10.1021/jo00296a066

R.L. McKenney, Jr., T.G. Floyd, W.E. Stevens, T.G. Archibald, A.P. Marchand, G.V.M. Sharma and S.G. Bott, Synthesis and thermal properties of 1,3-dinitro-3-(1′,3′-dinitroazetidin-3′-yl) azetidine (TNDAZ) and its admixtures with 1,3,3-trinitroazetidine (TNAZ), J. Energ. Mater. 16 (1998), 199-235. https://doi.org/10.1080/07370659808217513

A.M. Hiskey, M.C. Johnson and E.D. Chavez, Preparation of 1-substituted-3,3-dinitroazetidines, J. Energ. Mater. 17 (1999), 233-252. https://doi.org/10.1080/07370659908216106

J. Zhang, R. Hu, C. Zhu, G. Feng and Q. Long, Thermal behavior of 1,3,3-trinitroazetidine, Thermochim. Acta 298 (1997), 31-35. https://doi.org/10.1016/S0040-6031(97)00056-7

S. Zeman, The thermoanalytical study of some amino derivatives of 1,3,5-trinitrobenzene, Thermochim. Acta 216 (1993), 157-168. https://doi.org/10.1016/0040-6031(93)80389-R

M. H. Keshavarz, Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds, J. Hazard. Mater. A 138 (2006), 448-451. https://doi.org/10.1016/j.jhazmat.2006.05.097

Z. Jalovy, S. Zeman, M. Suceska, P. Vavra, K. Dudek and J.M. Rajic, 1,3,3-Trinitroazetidine (TNAZ). Part I. Syntheses and properties, J. Energ. Mater. 19 (2001), 219-239. https://doi.org/10.1080/07370650108216127

D.S. Watt and M.D. Cliff, Evaluation of 1,3,3-trinitroazetidine (TNAZ) – A high performance melt-castable explosive, Technical Report DSTO-TR-1000, Defence Science and Technology Organization (DSTO), Aeronautical and Maritime Research Laboratory, Melbourne, Australia, 2000.

A.K. Sikder and N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazard. Mater. A 112 (2004), 1-15. https://doi.org/10.1016/j.jhazmat.2004.04.003

S. Iyer, E.Y. Sarah, M. Yoyee, R. Perz, J. Alster and D. Stoc, TNAZ based composition C-4 development, 11th Annual Working Group, Institute on Synthesis of High Density Materials (Proc.), Kiamesha Lakes, 1992.

M. Oftadeh, M. Hamadanian, M. Radhoosh and M.H. Keshavarz, DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups, Comput. Theor. Chem. 964 (2011), 262-268. https://doi.org/10.1016/j.comptc.2011.01.007

J.O. Doali, R.A. Fifer, D.I. Kruzezynski and B.J. Nelson, The mobile combustion diagnostic fixture and its application to the study of propellant combustion Part-I. Investigation of the low pressure combustion of LOVA XM-39 Propellant, Technical Report No: BRLMR-3787/5, US Ballistic Research Laboratory, Maryland, 1989.

J.P. Agrawal, Recent trends in high-energy materials, Prog. Energ. Combust. Sci. 24(1) (1998), 1-30. https://doi.org/10.1016/S0360-1285(97)00015-4

M.D. Coburn, M.A. Hiskey and T.G. Archibald, Scale-up and waste-minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ), Waste Management 17 (1997), 143-146. https://doi.org/10.1016/S0956-053X(97)10013-7

J.J.P. Stewart, Optimization of parameters for semi empirical methods I, J. Comput. Chem. 10 (1989), 209- 220. https://doi.org/10.1002/jcc.540100209

J.J.P. Stewart, Optimization of parameters for semi empirical methods II, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A.R. Leach, Molecular Modeling, Essex: Longman, 1997.

W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S.H. Vosko, L. Vilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A.D. Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arab. J. Chem. 12(5) (2019), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, J. Energ. Mater. 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326

How to Cite
Türker, L. (2021). A Composite of NTO and TNAZ-A DFT Treatment. Earthline Journal of Chemical Sciences, 5(2), 261-274. https://doi.org/10.34198/ejcs.5221.261274