A Quire Polycyclic Structure of N8 - A DFT Treatise
Abstract
The present study considers a quire polycyclic structure of N8 and biradicals constructed from it which keep molecular integrity within the limitations of density functional theory at the levels of UB3LYP/6-311++G(2df,2p) and UB3LYP/cc-PVTZ. Certain structural, energetic, quantum chemical and spectral data have been obtained for them and discussed. The both methods of calculations generally produce parallel results.
References
B. Hirshberg, R.B. Gerber and A.I. Krylov, Calculations predict a stable molecular crystal of N8, Nat. Chem. 6 (2014), 52-56. https://doi.org/10.1038/nchem.1818
J.S. Wright, Stability and aromaticity of nitrogen rings. Nitrogen ion (N3+), nitrogen molecule (N4), and nitrogen molecule (N6), J. Am. Chem. Soc. 96 (1974), 4754-4760. https://doi.org/10.1021/ja00822a005
P. Zhang, K. Morokuma and A.M. Wodtke, High-level ab initio studies of unimolecular dissociation of the ground-state N3 radical, J. Chem. Phys. 122 (2005), 014106. https://doi.org/10.1063/1.1804497
D. Babikov, B.K. Kendrick, P. Zhang and K. Morokuma, Cyclic-N3. II. Significant geometric phase effects in the vibrational spectra, J. Chem. Phys. 122 (2005), 044315. https://doi.org/10.1063/1.1824905
D.A. Dixon, D. Feller, K.O. Christe, W.W. Wilson, A. Vij, V. Vij, H. Donald, B. Jenkins, R.M. Olson and M.S. Gordon, Enthalpies of formation of gas-phase N3, N3-, N5+ and N5- from ab initio molecular orbital theory, stability predictions for N5+N3- and N5+N5- and experimental evidence for the instability of N5+N3-, J. Am. Chem. Soc. 126 (2004), 834-843. https://doi.org/10.1021/ja0303182
Y.H. Liang, Q. Luo, M. Guo and Q.S. Li, What are the roles of N3 and N5 rings in designing polynitrogen molecules?, Dalton Trans. 41 (2012), 12075-12081. https://doi.org/10.1039/C2DT31016C
V.E. Zarko, Searching for ways to create energetic materials based on polynitrogen compounds (review), Combust. Explos. Shock Waves (Engl. Transl.) 46 (2010), 121-131. https://doi.org/10.1007/s10573-010-0020-x
T.M. Klapötke and R.D. Harcourt, The interconversion of N12 to N8 and two equivalents of N2, J. Mol. Struct. 559-601 (2001), 237-242. https://doi.org/10.1016/S01661280(00)00805-8
A. Smirnov, D. Lempert, T. Pivina and D. Khakimov, Basic characteristics for estimation polynitrogen compounds efficiency, Cent. Eur. J. Energ. Mater. 8 (2011), 233-247.
K.J. Wilson, S.A. Perera, R.J. Bartlett and J.D. Watts, Stabilization of the pseudo-benzene N6 ring with oxygen, J. Phys. Chem. A 105 (2001), 7693-7699. https://doi.org/10.1021/jp010783q
L. Peng, W. Lai, H. Chang, Y. Li, H. Li, W. Yang, Y. Wang, B. Wang and Y. Xue, Density functional theoretical study of polynitrogen compounds N5+Y− (Y=B(CF3)4, BF4, PF6 and B(N3)4), Chin. J. Chem. 30(3) (2012), 639-643. https://doi.org/10.1002/cjoc.201280011
K.O. Christe, W.W. Wilson, J.A. Sheehy and J.A. Boatz, N5+: A novel homoleptic polynitrogen ion as a high energy density material, Angew. Chem. Int. Ed. 38 (1999), 2004-2009. https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7
A. Vij, W.W. Wilson, V. Vij, F.S. Tham, J.A. Sheehy and K.O. Christe, Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+, J. Am. Chem. Soc. 123 (2001), 6308-6813. https://doi.org/10.1021/ja010141g
W.W. Wilson, A. Vij, V. Vij, E. Bernhardt and K.O. Christe, Polynitrogen chemistry: preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4, Chem. Eur. J. 9 (2003), 2840-2844. https://doi.org/10.1002/chem.200304973
K.O. Christe and A. Vij, History of the AFRL/USC DARPA Program on Polynitrogen Chemistry AFRL-PR-ED-TR-2004–0041, Vol. 2, October 2004. https://doi.org/10.21236/ADA430484
K. Hiraoka and S. Yamabe, Stabilities of the N3+(N2)n cluster ions with n=1–11, Chem. Phys. Lett. 154 (1989), 139-142. https://doi.org/10.1016/S0009-2614(89)87275-6
P. Pyykkö and N. Runeber, Ab initio studies of bonding trends: Part 9. The dicyanamide- carbon suboxide-dicyanoether-cyanogen azide isoelectronic series ABCDE1, J. Mol. Struct. (Theochem) 234 (1991), 279-290. https://doi.org/10.1016/0166-1280(91)89018-V
W.G. Xu, G.L. Li, L.J. Wang and Q.S. Li, Ab initio and density functional theory study of the mechanism of synthesis of the N5+ cation, Chem. Phys. Lett. 314 (1999), 300-306. https://doi.org/10.1016/S0009-2614(99)01164-1
M.T. Nguyen and T.K. Ha, Theoretical study of the pentanitrogen cation (N5+), Chem. Phys. Lett. 317 (2000), 135-141. https://doi.org/10.1016/S0009-2614(99)01320-2
X. Wang, H.R. Hu, A. Tian, N.B. Wong, S.H. Chien and W.K. Li, An isomeric study of N5+, N5, and N5−: a Gaussian-3 investigation, Chem. Phys. Lett. 329 (2000), 483-489. https://doi.org/10.1016/S0009-2614(00)01071-X
H.M. Netzloff, M.S. Cordon, K. Christ, W.W. Wilson, A. Vij and J.A. Boatz, On the existence of FN5, a theoretical and experimental study, J. Phys. Chem. A 107 (2003), 6638-6647. https://doi.org/10.1021/jp030157o
L. Türker, Contemplation on some cyclic N8 isomers-A DFT treatment, Defence Technol. 14 (2018), 19-27. https://doi.org/10.1016/j.dt.2017.04.009
L. Türker, A density functional study on some cyclic N10 isomers, Defence Technology 15(2) (2019), 154-161. https://doi.org/10.1016/j.dt.2018.08.005
L. Türker, Contemplation on some prismatic polynitrogen structures – A DFT treatment, ZAAC 645(18-19) (2019), 1118-1126. https://doi.org/10.1002/zaac.201900131
J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208
J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209
A.R. Leach, Molecular Modeling, Essex: Longman, 1997.
P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.
C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159
C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
This work is licensed under a Creative Commons Attribution 4.0 International License.