Some Diazodinitrophenol Isomers - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: diazodinitrophenol, dinol, DDNP, DDNPh, NICS, primary explosive


The present study considers a series of diazodinitrophenol isomers within the constraints of density functional theory at the level of B3LYP/311++G(d,p). One of the isomers in the series is known as DDNP which is a primary explosive material. Presently various dinitro substituted benzoxadiazol (bicyclic) and 2-diazo-1-oxide (azide) isomers analogous to DDNP have been focus of investigation. In all the cases the azide isomers have been found to be more stable electronically than the bicyclic counterparts. Various properties of them including quantum chemical ones are harvested, compared and discussed. Also NICS(0) values are obtained for the ring(s) and the local aromaticity values are discussed.


P. Griefs, Vorläufige Notiz über die Einwirkung von salpetriger Säure auf Amidinitro-und Aminitrophenylsäure, Justus Liebigs Ann. Chem. 106(1) (1858), 123-125.

P. Griess, Ueber eine neue Klasse organischer Verbindungen, in denen Wasserstoff durch Stickstoff vertreten ist, Justus Liebigs Ann. Chem. 121(3) (1862), 257-280.

T. Urbanskı, K. Szyc-Lewanska, M . Bednarczyk and J. Ejsmund, On formation of 2,4- dinitro-6-diazoxide by oxidation of picramic acid, Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences Chimiques 8(10) (1960), 587-590.

Y.M. Baskakov and V.P. Koroleu, Method of preparing DDNP, Russ. RU 215 11 34; Chem. Abstr. 136(1) (2002), 8641g.

T. Urbansky, Chemie a technologie výbušin, SNTL, Praha, 1959.

L.V. Clark, Diazodinitrophenol, a detonating explosive, Ind. Eng. Chem. 25(6) (1933), 663-669.

R. Hagel and K. Redecker, Sintox - a new, non-toxic primer composition by Dynamit Nobel AG, Prop., Explos., Pyrotech. 11 (1986), 184-187.

R. Matyas and J. Pachman, Primary Explosives, Berlin Heidelberg: Springer-Verlag 2013.

C.K. Lowe-Ma, R.A. Nissan and W.S. Wilson, Diazophenols-Their structure and explosive properties, report AD-A 197439, Naval weapon centrum, China-Lake, USA, 1987.

G. Holl, T.M. Klopötke, K. Polborn and C. Rienacker, Structure and bonding in 2-azo-4,6-dinitrophenol (DDNP), Prop., Explos., Pyrotech. 28(3) (2003), 153-155.

C.K. Lowe-Ma, R.A. Nissan, W.S. Wilson, K.N. Houk and X. Wang, Structure of diazophenols, 13C N.M.R. spectroscopy, and molecular orbital studies, J. Chem. Res. (S) (1988), 214-215.

J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220.

J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264.

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), A1133-A1138.

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100.

S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211.

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789.

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

Gaussian 03, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C.Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A.D. Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry 12(5) (2019), 621-632.

N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials 24 (2006), 17-33.

V.I. Minkin, M.N. Glukhovtsev and B.Y. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, New York: Wiley, 1994.

P.R. Schleyer and H. Jiao, What is aromaticity?, Pure Appl. Chem. 68 (1996), 209-218.

M.N. Glukhovtsev, Aromaticity today: energetic and structural criteria, J. Chem Educ. 74 (1997), 132-136.

T.M. Krygowski, M.K. Cyranski, Z. Czarnocki, G. Hafelinger and A.R. Katritzky, Aromaticity: a theoretical concept of immense practical importance, Tetrahedron 56 (2000), 1783-1796.

P.R. Schleyer, Introduction: aromaticity, Chem. Rev. 101 (2001), 1115-1118.

M.K. Cyranski, T.M. Krygowski, A.R. Katritzky and P.R. Schleyer, To what extent can aromaticity be defined uniquely?, J. Org. Chem. 67 (2002), 1333-1338.

P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R.E. Hommes, Nucleus-independent chemical shifts: a simple and efficient aromaticity probe, J. Am. Chem. Soc. 118 (1996), 6317-6318.

H. Jiao and P.R. Schleyer, Aromaticity of pericyclic reaction transition structures: magnetic evidence, J. Phys. Org. Chem. 11 (1998), 655-662.<655::AID-POC66>3.0.CO;2-U

P.R. Schleyer, B. Kiran, D.V. Simion and T.S. Sorensen, Does Cr(CO)3 complexation reduce the aromaticity of benzene?, J. Am. Chem. Soc. 122 (2000), 510-513.

D. Quinonero, C. Garau, A. Frontera, P. Ballaster, A. Costa and P.M. Deya, Quantification of aromaticity in oxocarbons: the problem of the fictitious “nonaromatic” reference system, Chem. Eur. J. 8 (2002), 433-438.<433::AID-CHEM433>3.0.CO;2-T

S. Patchkovskii and W. Thiel, Nucleus-independent chemical shifts from semiempirical calculations, J. Mol. Model. 6 (2000), 67-75.

How to Cite
Türker, L. (2021). Some Diazodinitrophenol Isomers - A DFT Treatment. Earthline Journal of Chemical Sciences, 6(2), 137-154.