Moroxydine Tautomers - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: moroxydine, tautomers, HIV, antiviral agent, density functional

Abstract

Moroxydine is an orally active non-nucleoside type antiviral agent of biguanide structure. Biguanides constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. In the present density functional study (B3LYP/6-311++(d,p)) tautomers of moroxydine have been investigated within the constraints of the theory and the basis set employed. Moroxydine may exhibit 1,3- and 1,5-type proton tautomerism. Presently, all those possible tautomeric forms are considered. All the tautomers are electronically stable and have thermo chemically favorable formation values at the standard conditions. Some quantum chemical and spectral properties of those tautomeric systems have been obtained and discussed. The effect of tautomeric variations on the chemical function descriptors have been determined. Also, the variation of polar surface areas of the tautomers have been considered in relation to their ability to penetrate the blood-brain barrier.

References

Yu, X-B., Chen, X-H., Ling, F., Hao, K., Wang, G-X., & Zhu, B. (2016). Moroxydine hydrochloride inhibits grass carp reovirus replication and suppresses apoptosis in Ctenopharyngodon idella kidney cells. Antiviral Research, 131, 156-165. https://doi.org/10.1016/j.antiviral.2016.05.008

Sheppard, S. (1994). Moroxydine: the story of a mislaid antiviral. Acta Dermato-Venereologica, 74(183), 1-9. PMID: 9868507. https://doi.org/10.2340/0001555518319

Gasparini, R., Amicizia, D., Lai, P.L., Bragazzi, N.L., & Panatto, D. (2014). Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: future compounds against influenza virus. J. Prev. Med. Hyg., 55, 109-129. PMID: 26137785; PMCID: PMC4718316.

Gasparini, R., Amicizia, D., Lai, P.L., Bragazzi, N.L., & Panatto D. (2014). Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: influenza life-cycle and currently available drugs. J. Prev. Med. Hyg., 55, 69-85.

Magri, A., Reilly, R., Scalacci, N., Radi, M., Hunter, M., Ripoll, M., Patel, A.H., & Castagnolo, D. (2015). Rethinking the old antiviral drug moroxydine: discovery of novel analogues as anti-hepatitis C virus (HCV) agents. Bioorganic Med. Chem.Lett., 25, 5372-5376. http://dx.doi.org/10.1016/j.bmcl.2015.09.029

Schersten, B. (1959). Herpes zoster treated with N’,N-anhydrobis (2-hydroxyethyl)- biguanide HC1 (ABOB). Svenska Lakartidningen, 56, 3563-3566. PMID: 14442681.

Nasemann, T. (1962). Virustatic effect of a heterocyclic biguanide on herpes simplex virus in vitro. Der Hautarzt, Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete, 13, 182-5. PMID: 14478421.

Sjoberg, B. (1960). Experiments on prophylaxis and suppression of epidemic influenza with NSN1 anhydrobis (b-Hydroxyethyl) biguanide hydrochloride (ABOB). A double blind study. Antibiotic Med., 7, 97-102.

Kaji, M., Kamiya, S., Tatewaki, E. Nagafuch, Z., & Fujiwara, N. (1966). Effect of N1,N1-anhydrobis-(b-hydroxyethyl) biguanide hydrochloride (ABOB) against adenovirus. Chemotherapy, 14, 66-68. https://doi.org/10.11250/chemotherapy1953.14.66

Kaji, M., Kamiya, S., Fujiwara, N., Mitsuuch, J., Hirayama, S., Nagayama, T., Mieno, K., Nishio, S., Nunoue, K., Funatsu, I., Shingu, T., Takajo, N., & Takenaka, T. (1966). Clinical evaluation of N1-N1-anhydrobis (β-hydroxyethyl) biguanide hydrochloride in the treatment of pharyngoconjunctival fever. Chemotherapy, 14, 69-71. https://doi.org/10.11250/chemotherapy1953.14.69

Ishida, N. (1965). Virus inhibitory activity of biguanides and related compounds. Ann. N. Y. Acad. Sci., 130(1), 460-468. https://doi.org/10.1111/j.1749-6632.1965.tb12582.x

Kleinschmidt, H. (1962). Trials with ABOB for prevention and therapy of measles and chickenpox. Munch Med. Wochenschr., 104, 2294-2296. PMID: 14033435.

Martinon, J., & Baran, L. (1964). A case of chickenpox during the virustat era. Bull. Soc. Fr. Dermatol. Syphiligr., 71, 92-3. PMID: 14184757.

Bonnet, J., Calas, E., Florens, A., & Castelain, P.Y. (1963). Action du virustat en dermatologie [Action of virustat in dermatology]. Bull Soc Fr Dermatol Syphiligr., 70, 677-9 (in French). PMID: 14119349.

An, M., Yi, D., Qiu, J., Liu, H., Hu, S., Han, J., Guo, Y., Huang, H., He, H., & Wang, P. (2020). Measurement and correlation for solubility of moroxydine hydrochloride in pure and binary solvents. Journal of Chemical & Engineering Data, 65(5), 2611-2618. https://doi.org/10.1021/acs.jced.0c00015

Fan,Y., Gao, Z.Z., Zhao, W.X., Chen, S-Y., Xi, Y-Y., Gao, R-H., Xiao, X., & Tao, Z. (2017). Supramolecular assemblies of moroxydine hydrochloride and cucurbit[7,8]uril. J. Incl. Phenom. Macrocycl. Chem., 87, 21-28. https://doi.org/10.1007/s10847-016-0671-7

Skrzypek, S. (2011). Electrochemical study of moroxydine and its voltammetric determination with a silver amalgam film electrode. Electroanalysis, 23(12), 2781-2788. https://doi.org/10.1002/elan.201100343

Lu, L., Gao, X., Zhu, M., Wang, S., Wu, Q., Xing, S., Fu, X., Liu, Z., & Guo, M. (2012). Exploration of biguanido–oxovanadium complexes as potent and selective inhibitors of protein tyrosine phosphatases. Biometals, 25, 599-610. https://doi.org/10.1007/s10534-012-9548-4

Kathuria, D., Bankar, A.A., & Bharatam, P.V. (2018). What's in a structure? The story of biguanides. Journal of Molecular Structure, 1152, 61-78. https://doi.org/10.1016/j.molstruc.2017.08.100

Grytsai, O., Myrgorodska, I., Rocchi, S., Ronco, C., & Benhida, R. (2021). Biguanides drugs: Past success stories and promising future for drug discovery. European Journal of Medicinal Chemistry, 224, 113726. https://doi.org/10.1016/j.ejmech.2021.113726

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Hitchcock, S.A., & Pennington, L.D. (2006). Structure-brain exposure relationships. J. Med. Chem., 49 (26), 7559-7583. PMID: 17181137. https://doi.org/10.1021/jm060642i

Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6 (1-2), 146-56. PMID: 23428480. https://doi.org/10.1504/IJCBDD.2013.052195

Published
2023-05-09
How to Cite
Türker, L. (2023). Moroxydine Tautomers - A DFT Treatment. Earthline Journal of Chemical Sciences, 10(1), 111-123. https://doi.org/10.34198/ejcs.10123.111123
Section
Articles