Some Isomers of Nevirapine - A DFT Study

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: nevirapine, Viramune, NVP, anti-HIV agent, density functional

Abstract

Nevirapine is a dipyridodiazepinone and representative of a new class of anti-HIV agents, the non-nucleoside reverse transcriptase inhibitors. The effect of some centric perturbations on some properties of nevirapine have been investigated within the limitations of density at the level of B3LYP/6-31++G(d,p). The calculations have revealed that the isomers constructed are all thermally favorable and electronically stable. Various calculated properties of the isomers including geometrical, electronic, thermo chemical, quantum chemical and some spectral properties have been harvested and discussed. Additionally, nucleus-independent chemical shift, NICS(0), calculations have been performed and the effect of perturbations on the local aromaticity of six-membered rings have been investigated. The effect of monocentric carbon to nitrogen perturbations on the chemical function descriptors have been determined. Also, the variation of polar surface areas (PSA) of the isomers have been considered in relation to their ability to penetrate the blood-brain barrier.

References

Grozinger, K., Proudfoot, J., & Hargrave, K. (2006). Discovery and development of nevirapine. In M.S. Chorghade (Ed.). Drug discovery and development: Drug discovery (V. 1, Ch.13, pp. 353-363). NY: Wiley. https://doi.org/10.1002/0471780103.ch13

Patel, S.S., & Benfield, P. (1996). Nevirapine. Clin. lmmunother., 6(4), 307-317. https://doi.org/10.1007/BF03259093

Milinkovic, A., & Martinez, E. (2004). Nevirapine in the treatment of AIDS, Experts. Rev. Anri-infect. Ther., 2(3), 367-373. https://doi.org/10.1586/14787210.2.3.367

Spence, R.A., Kati, W.M., Anderson, K.S., & Johnson, K.A. (1995). Mechanism of inhibition of HIV-I reverse transcriptase by nonnucleoside inhibitors. Science, 267, 988-93. https://doi.org/10.1126/science.7532321

Palaniappan, C., Fay, P.J., & Bambara, R.A. (1995). Nevirapine alters the cleavage specificity of ribonuclease H of human immunodeficiency virus I reverse transcriptase. J. Bioi. Chern., 270(9), 4861-9. https://doi.org/10.1074/jbc.270.9.4861

Mui, P.W., Jacober, S.P., Hargrave, K.D., & Adams, J. (1992). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201-202. https://doi.org/10.1021/jm00079a029

Caira, M.R., Stieger, N., Liebenberg, W., De Villiers, M.M., & Samsodien, H. (2008). Solvent inclusion by the anti-HIV drug nevirapine: X-ray structures and thermal decomposition of representative solvates. Crystal Growth & Design, 8(1), 17-23. https://doi.org/10.1021/cg070522r

Burke, E.W.D., Morris, G.A., Vincent, M.A., Hillier, I.H., & Clayden, J. (2012). Is nevirapine atropisomeric? Experimental and computational evidence for rapid conformational inversion. Org. Biomol. Chem., 10, 716-719. https://doi.org/10.1039/C1OB06490H

Diab, S., McQuade, D.T., Gupton, B.F., & Gerogiorgis, D.I. (2019). Process design and optimization for the continuous manufacturing of nevirapine, an active pharmaceutical ingredient for HIV treatment. Organic Process Research & Development, 23(3), 320-333. https://doi.org/10.1021/acs.oprd.8b00381

Sylvain, B., Defoy, D., Dory, Y.L., & Klarskov, K. (2009). Efficient synthesis of nevirapine analogs to study its metabolic profile by click fishing. Bioorganic & Medicinal Chemistry Letters, 19(21), 6127-6130. https://doi.org/10.1016/j.bmcl.2009.09.011

Sharma, A.M., Klarskov, K., & Uetrecht, J. (2013). Nevirapine bioactivation and covalent binding in the skin. Chemical Research in Toxicology, 26(3), 410-421. https://doi.org/10.1021/tx3004938

Bhat, J.I., & Alva, V.D.P. (2011). Inhibition effect of nevirapine an antiretroviral on the corrosion of mild steel under acidic condition. Journal of the Korean Chemical Society, 55(5), 835-841. https://doi.org/10.5012/JKCS.2011.55.5.835

Bhembe, Y.A., Lukhele, L.P., Hlekelele, L., Ray, S.S., Sharma, A., Vo, D-V.N., & Dlamini, L.N. (2020). Photocatalytic degradation of nevirapine with a heterostructure of few-layer black phosphorus coupled with niobium (V) oxide nanoflowers (FL BP@Nb2O5). Chemosphere, 261, 128159. https://doi.org/10.1016/j.chemosphere.2020.128159

Apath, D., Moyo, M., & Shumba, M. (2020). TiO2 nanoparticles decorated graphene nanoribbons for voltammetric determination of an anti-HIV drug nevirapine. Journal of Chemistry, 2020, Article ID 3932715, 13 pp. https://doi.org/10.1155/2020/3932715

Tateishi, Y., Ohe, T., Yasuda, D., Takahashi, K., Nakamura, S., Kazuki, Y., & Mashino, T. (2020). Synthesis and evaluation of nevirapine analogs to study the metabolic activation of nevirapine. Drug Metabolism and Pharmacokinetics, 35(2), 238-243, https://doi.org/10.1016/j.dmpk.2020.01.006

Sathisaran, I., & Dalvi, S.V. (2021). Cocrystallization of an antiretroviral drug nevirapine: an eutectic, a cocrystal solvate, and a cocrystal hydrate. Crystal Growth & Design, 21(4), 2076-2092. https://doi.org/10.1021/acs.cgd.0c01513

Ayala, A.P., Siesler, H.W., Wardell, S.M.S.V., Boechat, N., Dabbene, V., & Cuffni, S.L. (2007). Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. J. Mol. Struct., 828(1-3), 201-210. https://doi.org/10.1016/j.molstruc.2006.05.055

Vailikhit, V., Bunsawansong, P., Techasakul, S., & Hannongbua, S. (2006). Conformational analysis of nevirapine in solutions based on nmr spectroscopy and quantum chemical calculations. J. Theor. Comput. Chem., 5(4), 913-924. https://doi.org/10.1142/S0219633606002702

Parreira, R.L.T., Abrahão-Júnior, O., & Galembeck, S.E. (2001). Conformational preferences of non-nucleoside HIV-1 reverse transcriptase inhibitors. Tetrahedron, 57(16), 3243-3253. https://doi.org/10.1016/S0040-4020(01)00193-4

Abrahão-Júnior, O., Nascimento, P.G.B.D., & Galembeck, S.E. (2001). Conformational analysis of the HIV-1 virus reverse transcriptase nonnucleoside inhibitors: TIBO and nevirapine. J. Comput.Chem., 22(15), 1817-1829. https://doi.org/10.1002/jcc.1133

Hannongbua, S., Prasithichokekul, S., & Pungpo, P.(2001). Conformational analysis of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, based on quantum mechanical calculations. J. Comput. Aided Mol. Des., 15, 997-1004. https://doi.org/10.1023/A:1014881723431

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y. Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Mui, P.W., Jacober, S.P., Hargrave, K.D., & Adams, J. (1992). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201-202. https://doi.org/10.1021/jm00079a029

Reichardt, C. (2004). Solvent effects and solvent effects in organic chemistry. Weinheim: Wiley-VCH.

Hitchcock, S.A., & Pennington, L.D. (2006). Structure-brain exposure relationships. J. Med. Chem., 49(26), 7559-7583. https://doi.org/10.1021/jm060642i. PMID 17181137.

Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6(1-2), 146-56. https://doi.org/10.1504/IJCBDD.2013.052195. PMID 23428480.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/s0040-4020(99)00979-5

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem. Soc.Rev., 44(18), 6597-6615. https://doi.org/10.1039/c5cs00114e

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118(26), 6317-6318. https://doi.org/10.1021/ja960582d. PMID: 28872872.

Published
2023-04-18
How to Cite
Türker, L. (2023). Some Isomers of Nevirapine - A DFT Study. Earthline Journal of Chemical Sciences, 10(1), 93-109. https://doi.org/10.34198/ejcs.10123.93109
Section
Articles