Hypergolic Systems based on Hydrogen Peroxide Oxidizer

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: hypergol, hydrogen peroxide, ionic liquid, ignition delay, green hypergolic

Abstract

Hydrogen peroxide, H2O2, is a promising and nontoxic oxidant. In recent years considerable attention has been paid to the development of hypergolic system compositions, because the use of them not only markedly simplifies the engine design and rocket system operation but also provides the possibility of their repeated use. Moreover, their high performance, high environmental compatibility and low toxicity make them highly preferable. The present review considers recent works on hypergolic systems involving hydrogen peroxide as the oxidizer and various green propellants of organic and inorganic nature with or without certain additives.

References

Kubal, T., Dambach, E.M., Son, S., Anderson, W., & Pourpoint, T. (2010). Aspects of monomethylhydrazine and red fuming nitric acid ignition. AIAA 2010-6902. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 25-28 July 2010, Nashville, TN. https://doi.org/10.2514/6.2010-6902

Hallit, R.E.A., & Bauerle, G. (2005). Hypergolic azide fuels with hydrogen peroxide. US 6,949,152 B2.

Mahakali, R., Kuipers, F.M., Yan, A.H., Anderson, W.E., & Pourpoint, T.L. (2011). Development of reduced toxicity hypergolic propellants. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 31 July - 03 August 2011, San Diego, California. https://doi.org/10.2514/6.2011-5631

Pourpoınt, T.L., & Anderson, W.E. (2007). Hypergolic reaction mechanisms of catalytically promoted fuels with rocket grade hydrogen peroxide. Combustion Science and Technology, 179(10), 2107-2133. https://doi.org/10.1080/00102200701386149

Guseinov, S.L., Fedorov, S.G., Kosykh, V.A., & Storozhenko, P.A. (2018). Hypergolic propellants based on hydrogen peroxide and organic compounds: historical aspect and current state. Russian Chemical Bulletin, International Edition, 67(11), 1943-1954. https://doi.org/10.1007/s11172-018-2314-1

Ventura, M., & Mullens, P. (1999). The use of hydrogen peroxide for propulsion and power. AIAA 1999-2880. 35th Joint Propulsion Conference and Exhibit. 20-24 June 1999, Los Angeles, CA, USA. https://doi.org/10.2514/6.1999-2880

Andrews, D. (1990). Advantages of hydrogen peroxide as a rocket oxidant. Journal of the British Interplanetary Society, 43(7), 319-328.

Harlow, J., Hydrogen peroxide - A U.K. Perspective. Lecture at University of Surrey Symposium on Hydrogen Peroxide, July 20-24, 1998.

Maschio, L.J., de Araújo, E.P., Pereira, L.G.F., Gouvêa, L.H., Vieira, R. (2021). Assessing the performance of a green liquid fuel hypergolic with hydrogen peroxide in a 50 N bipropellant thruster. International Journal of Energetic Materials and Chemical Propulsion, 20(1), 21-30. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2020032684

Castaneda, D.A., & Natan, B. (2019). Experimental investigation of the hydrogen peroxide – solid hydrocarbon hypergolic ignition. Acta Astronautica, 158, 286-295. https://doi.org/10.1016/j.actaastro.2018.05.058

Park, S., Lee, K., Kang, H., Park, Y., & Lee, J. (2022). Effects of oxidizing additives on the physical properties and ignition performance of hydrogen peroxide-based hypergolic propellants. Acta Astronautica, 200, 48-55. https://doi.org/10.1016/j.actaastro.2022.07.051

Lauck, F., Witte, J., Negri, M., Werling, L., & Schlechtriem, S. (2022). Hypergolic ignition investigations with an impinging injector of an ionic liquid fuel with hydrogen peroxide. Space Propulsion, 2022, 09-13. https://elib.dlr.de/187226/

Kang, H., & Kwon, S. (2018). Experiment and speculations on nontoxic hypergolic propulsion with hydrogen peroxide. Journal of Spacecraft and Rockets, 55(5), 1230- 1234. https://doi.org/10.2514/1.A34177

Kang, H.J., Jang, D.W., & Kwon, S.J. (2016). Demonstration of 500 N scale bipropellant thruster using non-toxic hypergolic fuel and hydrogen peroxide. Aerospace Science and Technology, 49, 209-214. https://doi.org/10.1016/j.ast.2015.11.038

Kang, H.J., & Kwon, S.J. (2017). Green hypergolic combination: diethylenetriamine- based fuel and hydrogen peroxide. Acta Astronautica, 137, 25-30. https://doi.org/10.1016/j.actaastro.2017.04.009

Florczuk, W., & Rarata, G. (2017). Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts. AIAA 2017-4849. 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA. https://doi.org/10.2514/6.2017-4849

Quintens, H., Boust, B., Bellenoue, M., Beauchet, R., & Batonneau, Y. (2022). Experimental comparison of hydrogen peroxide catalysts for a hydrogen peroxide/n- decane bipropellant combustor. Journal of Propulsion and Power, 58(5), 2022-09. https://doi.org/10.2514/1.B38593

Baek, S., Jung, W., Kang, H., & Kwon, S. (2018). Development of high-performance green-monopropellant thruster with hydrogen peroxide and ethanol. Journal of Propulsion and Power, 34(5), 1-6. https://doi.org/10.2514/1.B37081

Lauck, F., Balkenhohl, J., Negri, M., Freudenmann, D., & Schlechtriem, S. (2021). Green bipropellant development – A study on the hypergolicity of imidazole thiocyanate ionic liquids with hydrogen peroxide in an automated drop test setup. Combustion and Flame, 226, 87-97. https://doi.org/10.1016/j.combustflame.2020.11.033

Zhao, X., Wang, Z., Qi, X., Song, S., Huang, S., Wang, K., & Zhang, Q. (2021). Hunting for energetic complexes as hypergolic promoters for green propellants using hydrogen peroxide as oxidizer. Inorg. Chem., 60(22), 17033-17039. https://doi.org/10.1021/acs.inorgchem.1c02149

Kopacz, W., Okninski, A., Kasztankiewicza, A., Nowakowskia, P., Rarata, G., & Maksimowski, P. (2022). Hydrogen peroxide – A promising oxidizer for rocket propulsion and its application in solid rocket propellants. FirePhysChem., 2(1), 56-66. https://doi.org/10.1016/j.fpc.2022.03.009

Stützer, R.G., Balkenhohl, J., Lauck, F., Oschwald, M., & Schlechtriem, S. (2022). Hypergolic reaction between green ionic liquid EMIM SCN and hydrogen peroxide in lab-scale drop test chamber. International Journal of Energetic Materials and Chemical Propulsion, 21(1), 87-100. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2021038219

Jeong, J., Rang, S., Ugolini, V.M.P., & Kwon, S. (2022). Hypergolicity improvement by activated carbon-supported catalysts for hydrogen peroxide oxidizer. Acta Astronautica, 198, 720-727. https://doi.org/10.1016/j.actaastro.2022.06.011

Kang, H., Park, S. Park, Y., & Lee , J. (2020). Ignition-delay measurement for drop test with hypergolic propellants: Reactive fuels and hydrogen peroxide. Combustion and Flame, 217, 306-313. https://doi.org/10.1016/j.combustflame.2020.04.017

Sam, I.I., Gayathri, S., Santhosh, G., Cyriac, J., & Reshmi, S. (2022). Exploring the possibilities of energetic ionic liquids as non-toxic hypergolic bipropellants in liquid rocket engines. Journal of Molecular Liquids, 350, 118217. https://doi.org/10.1016/j.molliq.2021.118217

Mezyk, L., Gut, Z., Mohan, K., Kindracki, J., & Rarata, G. (2022). Initial research on thermal decomposition of 98% concentrated hydrogen peroxide in thruster-like conditions. Engineering Science and Technology, an International Journal, 31, 101054. https://doi.org/10.1016/j.jestch.2021.08.011

Connell, T.L. Jr., Risha, G.A., & Yetter, R.A. (2018). Ignition of hydrogen peroxide with gel hydrocarbon fuels. Journal of Propulsion and Power, 34(1), 170-181. https://doi.org/10.2514/1.B36458

Kim, K-S., Bhosale, V.K., & Kwon, S. (2021). Synergistic effect of a hybrid additive for hydrogen peroxide-based low toxicity hypergolic propellants. Combustion and Flame, 231, 111450. https://doi.org/10.1016/j.combustflame.2021.111450

Melof, B.M., & Grubelich, M.C. (2001). Investigation of hypergolic fuels with hydrogen peroxide. AIAA 2001-3837. 37th Joint Propulsion Conference and Exhibit. 8-11 July 2001, Salt Lake City, UT, USA. https://doi.org/10.2514/6.2001-3837

Wang, Y-J., Wang, X-Y., Xu, H., Ren, W-W., Pang, R., Yang, L., Tong, W-C., Wang, Q-Y., & Zang, S-Q. (2023). One-dimensional copper bromide based inorganic-organic hybrids as fuels for hypergolic bipropellants with hydrogen peroxide as oxidizer. Chemical Engineering Journal, 455, 140587. https://doi.org/10.1016/j.cej.2022.140587

Kapusta, Ł.J., Boruc, Ł., & Kindracki, J. (2021). Pressure and temperature effect on hypergolic ignition delay of triglyme-based fuel with hydrogen peroxide. Fuel, 287, 119370. https://doi.org/10.1016/j.fuel.2020.119370

Ricker, S.C., Brüggemann, D., Freudenmann, D., Ricker, R., & Schlechtriem, S. (2022). Protic thiocyanate ionic liquids as fuels for hypergolic bipropellants with hydrogen peroxide. Fuel, 328, 125290. https://doi.org/10.1016/j.fuel.2022.125290

Rang, S., Jeong, J., Bhosale, V.K., & Kwon, S. (2022). Reactivity of hypergolic hybrid solid fuel with industrial grade hydrogen peroxide. Fuel, 330, 125543. https://doi.org/10.1016/j.fuel.2022.125543

Schneider, S., Hawkins, T., Ahmed, Y., Rosander, M., Hudgens, L., & Mills, J. (2011). Green bipropellants: hydrogen-rich ionic liquids that are hypergolic with hydrogen peroxide. Angew. Chem. Int. Ed., 50, 5886-5888. https://doi.org/10.1002/anie.201101752

Das, J., Shem-Tov, D., Wang, S., Zhang, L., Flaxer, E., Zhang, S., Stierstorfer , J., Wang, K., Yan, Q-L., Dobrovetsky, R., & Gozin, M. (2021). Hydride- and boron-free solid hypergolic H2O2-ignitophores. Chemical Engineering Journal, 426, 131806. https://doi.org/10.1016/j.cej.2021.131806

Wang, K., Wang, Z., Zhao, X., Qi, X., Song, S., Jin, Y., & Zhang, Q. (2022). Unearthing hidden hypergolic potential of energetic complexes with hydrogen peroxide. Combustion and Flame, 244, 112235. https://doi.org/10.1016/j.combustflame.2022.112235

McNeal, C.I., Jr., & Anderson, W.E. (1999). The peroxide pathway. Proceeding of the 2nd International Hydrogen Peroxide Propulsion Conference, Purdue Univ., West Lafayette, IN, pp. 211-219.

Cong, Y., Zhang, T., Li, T., Sun, J., Wang, X., Ma, L., Liang, D., & Lin, L. (2004). Propulsive performance of a hypergolic H2O2/kerosene bipropellant. Journal of Propulsion and Power, 20(1), 83-86. https://doi.org/10.2514/1.9189

Wernimont, E.J., & Heister, S.D. (2000). Combustion experiments in hydrogen peroxide/polyethylene hybrid rocket with catalytic ignition. J. Propul. Power, 16(2), 318-326. https://doi.org/10.2514/2.5571

Schneider, S., Hawkins, T., Rosander, M., Vaghjiani, G., Chambreau, S., & Drake, G. (2008). Ionic liquids as hypergolic fuels. Energy Fuels, 22, 2871-2872. https://doi.org/10.1021/ef800286b

Baikousi, M., Chalmpes, N., Spyrou, K., Bourlinos, A.B., Avgeropoulos, A., Gournis, D., & Karakassides, M.A. (2019). Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett., 254, 58-61. https://doi.org/10.1016/j.matlet.2019.07.019

Chalmpes, N., Spyrou, K., Bourlinos, A.B., Moschovas, D., Avgeropoulos, A., Karakassides, M.A., & Gournis, D. (2020). Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine at ambient conditions. Molecules, 25, 297, 1-6. https://doi.org/10.3390/molecules25020297

Chalmpes, N., Asimakopoulos, G., Spyrou, K., Vasilopoulos, K.C., Bourlinos, A.B., Moschovas, D., Avgeropoulos, A., Karakassides, M.A., & Gournis, D. (2020). Functional carbon materials derived through hypergolic reactions at ambient conditions. Nanomaterials, 10, 566, 1-13. https://doi.org/10.3390/nano10030566

Chalmpes, N., Spyrou, K., Vasilopoulos, K.C., Bourlinos, A.B., Moschovas, D., Avgeropoulos, A., Gioti, C., Karakassides, M.A., & Gournis, D. (2020). Hypergolics in carbon nanomaterials synthesis: New paradigms and perspectives. Molecules, 25, 2207. https://doi.org/10.3390/molecules25092207

Bourlinos, A.B., Chalmpes, N., Gournis, D., & Karakassides, M.A. (2022). Hypergolic materials synthesis: A review. J. Nanotechnol. Res., 4(2), 059-096. https://doi.org/10.26502/jnr.2688-85210031

Natan, B., Perteghella, V., & Solomon, Y. (2011). Hypergolic ignition by fuel gelation and suspension of reactive or catalyst particles. J. Propul. Power, 27(5), 1145-1149. https://doi.org/10.2514/1.B34130

Zhao, X., Wang, J., Jin, Y., Wang, K., & Zhang, Q. (2022). Energetic complexes as promoters for the green hypergolic bipropellant of EIL-H2O2 combinations. FirePhysChem, 2(29),185-190. https://doi.org/10.1016/j.fpc.2021.11.006

Bhosale, V.K., Jeong, J., Choi, J., Churchill, D.G., Lee, Y., & Kwon, S. (2020). Additive-promoted hypergolic ignition of ionic liquid with hydrogen peroxide. Combustion and Flame, 214, 426-436. https://doi.org/10.1016/j.combustflame.2020.01.013

Bhosale, V.K., Jeong, J., & Kwon, S. (2019). Ignition of boron-based green hypergolic fuels with hydrogen peroxide. Fuel, 255, 115729. https://doi.org/10.1016/j.fuel.2019.115729

Bourlinos, A.B. (2022). A new generation of carbon-containing hypergolic fuels based on water-ignitable C-NaH mixtures. Journal of Nanotechnology Research, 4(1), 001-009. https://doi.org/10.26502/jnr.2688-85210026

Nath, S., Laso, I., Mallick, L., Sobe, Z., Koffler, S., Blumer-Ganon, B., Borzin, E., Libis, N., & Lefkowitz, J.K. (2022). Comprehensive ignition characterization of a non toxic hypergolic hybrid rocket propellant. Proceedings of the Combustion Institute, in press. https://doi.org/10.1016/j.proci.2022.07.118

Wang, B., Wang, Z., Jin, Y., & Wang, K. (2022). Designing difunctional promoters for hypergolic ignitions of green bipropellants combining ionic liquids with H2O2. Ind. Eng. Chem. Res., 61(48), 17433-17439. https://orcid.org/0000-0002-4965-6719

Castaneda, D.A., & Natan, B. (2022). Hypergolic ignition of hydrogen peroxide with various solid fuels. Fuel, 316, 123432. https://doi.org/10.1016/j.fuel.2022.123432

Rusek, J.J. (2004). Hydrogen peroxide for propulsion and power applications: A swift perspective. Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557), 7-8 June 2004, Sardinia, Italy.

Schneider, S., Hawkins, T., Rosander, M., Ahmed, Y., Mills, J., & Hudgens, L. (2011). Green hypergolic bipropellants: H2O2/Hydrogen-rich ionic liquids. Prepr. Am. Chem. Soc. Div. Pet. Chem., 55, 158.

Zhang, Y., & Shreeve, J.M., (2011). Dicyanoborate-based ionic liquids as hypergolic fluids. Angew. Chem. Int. Ed., 50, 935-937. https://doi.org/10.1002/anie.201005748

Titov, L.V., Gavrilova, L.A., Eremin, E.R., Mishchenchuk, S.S., & Rosolovskii, V.Y. (1971). Tetrabutylammonium borohydride and its complex with aluminum borohydride. Izv. Akad. Nauk SSSR Ser. Khim., 6, 1354-1356. https://doi.org/10.1007/BF00855404

Noeth, H., & Ehemann, M. (1967). Triple hydrides of aluminum and beryllium. J. Chem. Soc. Chem. Commun., 14, 685-686. https://doi.org/10.1039/C19670000685

Sippel, T.R., Shark, S.C., Hinkelman, M.C., Pourpoint, T.L., Son, S.F., & Heister, S.D. (2011). Hypergolic ignition of metal hydride-based fuels with hydrogen peroxide. Organized by the Eastern States Section of the Combustion Institute and Hosted by the Georgia Institute of Technology, Atlanta, GA, March 20-23, 2011.

Jin, Y., Zhang, W., Zhou, Z., Liu, T., Xia, H., Huang, S., & Zhang, Q. (2022). Recent advances in hypergolic ionic liquids with broad potential for propellant applications. FirePhysChem., 2, 236-252. https://doi.org/10.1016/j.fpc.2022.04.001

Published
2023-02-15
How to Cite
Türker, L. (2023). Hypergolic Systems based on Hydrogen Peroxide Oxidizer . Earthline Journal of Chemical Sciences, 10(1), 1-42. https://doi.org/10.34198/ejcs.10123.142
Section
Articles