Some Tautomers of Dacarbazine - A DFT Study

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: dacarbazine, DTIC, tautomers, chemotherapy, density functional, NICS

Abstract

The present study considers some of dacarbazine tautomers having resulted from 1,3- and 1,5-proton migration. Density functional approach has been adopted at the level of B3LYP/6-311++G(d,p) in order to obtain various geometrical, physicochemical, spectral and quantum chemical properties of the tautomers of concern. Also local aromaticity of the imidazole ring in some of the tautomers having 6π-electrons has been obtained by calculating the nucleolus independent chemical shift values.

References

Katzung, B.G. (1984). Basic and clinical pharmacology. Los Altros, California: Lange Medical Pub.

Ahlgren, J.D., & Macdonald, J.S. (1992). Gastrointestinal oncology. Philadelphia: J.B. Lippincott.

Rosenberg, S.A., Suit, H.D., & Baker, L.H. (1985). Sarcomas of soft tissue, in V.T. Devita, Jr., S. Hellman and S.A. Rosenberg, eds., Cancer: Principles and practice of oncology, 2nd ed., Philadelphia: J.B. Lippincott.

Wu, L-T., Averbuch, S.D., Ball, D.W., Bustros, A.D., Baylin, S.B., & McGuire, W.P. (1994). Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer, 73(2), 432-436. https://doi.org/10.1002/1097-0142(19940115)73:2%3C432::AID-CNCR2820730231%3E3.0.CO;2-K

Edmonson, J.H., Marks, R.S., Buckner J.C., & Mahoney, M.R. (2002). Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) Plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Investigation, 20(5-6), 605-612. https://doi.org/10.1081/CNV-120002485

Glanze, W.D., Anderson, N.K., & Anderson, L.E. (1987). Medical encyclopedia. New York: Signet/Mosby,

Radi, A-E., Eissa, A., & Nassef, H.M. (2014). Voltammetric and spectroscopic studies on the binding of the antitumor drug dacarbazine with DNA. Journal of Electroanalytical Chemistry, 717-718, 24-28. https://doi.org/10.1016/j.jelechem.2014.01.007

King, D.T., & Stewart, J.T. (1993). HPLC determination of dacarbazine, doxorubicin, and ondansetron mixture in 5% dextrose injection on underivatized silica with an aqueous-organic mobile phase. J. Liq. Chromatogr., 16, 2309-2323. https://doi.org/10.1080/10826079308020988

Fiore, D., Jackson, A.J., Didolkar, M.S., & Dandu, V.R. (1985). Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob. Agents Chemother., 27, 977-979. https://doi.org/10.1128/AAC.27.6.977

Ordieres, A.J.M., Garcia, A.C., Blanco, P.T., & Smyth, W.F. (1987). An electroanalytical study of the anticancer drug dacarbazine. Anal. Chim. Acta., 202, 141-149. https://doi.org/10.1016/S0003-2670(00)85909-7

Rodriguez, J.R.B., Costa, A.C., Ordieres, A.J.M., & Blanco, P.T. (1989). Electrochemical oxidation of dacarbazine and its major metabolite (AIC) on carbon electrodes. Electroanalysis, 1, 529-534. https://doi.org/10.1002/elan.1140010609

Shteingolts, S.A., Davydova, V.V., Mar’yasov, M.A., Nasakin, O.E., Fayzullin, R.R., & Lodochnikova, O.A. (2020). Crystal structure of dacarbazine, metoclopramide, and acetylcholine pentacyanopropenides. J. Struct. Chem., 61, 928-937. https://doi.org/10.1134/S002247662006013X

Swiderski, G., Lazny, R., Sienkiewicz, M., Kalinowska, M., Swisłocka, R., Acar, A.O., Golonko, A., Matejczyk, M., & Lewandowski, W. (2021). Synthesis, spectroscopic, and theoretical study of copper and cobalt complexes with dacarbazine. Materials, 14, 3274. https://doi.org/10.3390/ma14123274

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem. Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d

Published
2022-09-28
How to Cite
Türker, L. (2022). Some Tautomers of Dacarbazine - A DFT Study. Earthline Journal of Chemical Sciences, 9(1), 47-62. https://doi.org/10.34198/ejcs.9123.4762
Section
Articles