Some Tautomers of Dacarbazine - A DFT Study
Abstract
The present study considers some of dacarbazine tautomers having resulted from 1,3- and 1,5-proton migration. Density functional approach has been adopted at the level of B3LYP/6-311++G(d,p) in order to obtain various geometrical, physicochemical, spectral and quantum chemical properties of the tautomers of concern. Also local aromaticity of the imidazole ring in some of the tautomers having 6π-electrons has been obtained by calculating the nucleolus independent chemical shift values.
References
Katzung, B.G. (1984). Basic and clinical pharmacology. Los Altros, California: Lange Medical Pub.
Ahlgren, J.D., & Macdonald, J.S. (1992). Gastrointestinal oncology. Philadelphia: J.B. Lippincott.
Rosenberg, S.A., Suit, H.D., & Baker, L.H. (1985). Sarcomas of soft tissue, in V.T. Devita, Jr., S. Hellman and S.A. Rosenberg, eds., Cancer: Principles and practice of oncology, 2nd ed., Philadelphia: J.B. Lippincott.
Wu, L-T., Averbuch, S.D., Ball, D.W., Bustros, A.D., Baylin, S.B., & McGuire, W.P. (1994). Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer, 73(2), 432-436. https://doi.org/10.1002/1097-0142(19940115)73:2%3C432::AID-CNCR2820730231%3E3.0.CO;2-K
Edmonson, J.H., Marks, R.S., Buckner J.C., & Mahoney, M.R. (2002). Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) Plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Investigation, 20(5-6), 605-612. https://doi.org/10.1081/CNV-120002485
Glanze, W.D., Anderson, N.K., & Anderson, L.E. (1987). Medical encyclopedia. New York: Signet/Mosby,
Radi, A-E., Eissa, A., & Nassef, H.M. (2014). Voltammetric and spectroscopic studies on the binding of the antitumor drug dacarbazine with DNA. Journal of Electroanalytical Chemistry, 717-718, 24-28. https://doi.org/10.1016/j.jelechem.2014.01.007
King, D.T., & Stewart, J.T. (1993). HPLC determination of dacarbazine, doxorubicin, and ondansetron mixture in 5% dextrose injection on underivatized silica with an aqueous-organic mobile phase. J. Liq. Chromatogr., 16, 2309-2323. https://doi.org/10.1080/10826079308020988
Fiore, D., Jackson, A.J., Didolkar, M.S., & Dandu, V.R. (1985). Simultaneous determination of dacarbazine, its photolytic degradation product, 2-azahypoxanthine, and the metabolite 5-aminoimidazole-4-carboxamide in plasma and urine by high-pressure liquid chromatography. Antimicrob. Agents Chemother., 27, 977-979. https://doi.org/10.1128/AAC.27.6.977
Ordieres, A.J.M., Garcia, A.C., Blanco, P.T., & Smyth, W.F. (1987). An electroanalytical study of the anticancer drug dacarbazine. Anal. Chim. Acta., 202, 141-149. https://doi.org/10.1016/S0003-2670(00)85909-7
Rodriguez, J.R.B., Costa, A.C., Ordieres, A.J.M., & Blanco, P.T. (1989). Electrochemical oxidation of dacarbazine and its major metabolite (AIC) on carbon electrodes. Electroanalysis, 1, 529-534. https://doi.org/10.1002/elan.1140010609
Shteingolts, S.A., Davydova, V.V., Mar’yasov, M.A., Nasakin, O.E., Fayzullin, R.R., & Lodochnikova, O.A. (2020). Crystal structure of dacarbazine, metoclopramide, and acetylcholine pentacyanopropenides. J. Struct. Chem., 61, 928-937. https://doi.org/10.1134/S002247662006013X
Swiderski, G., Lazny, R., Sienkiewicz, M., Kalinowska, M., Swisłocka, R., Acar, A.O., Golonko, A., Matejczyk, M., & Lewandowski, W. (2021). Synthesis, spectroscopic, and theoretical study of copper and cobalt complexes with dacarbazine. Materials, 14, 3274. https://doi.org/10.3390/ma14123274
Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132
Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem. Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E
Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
This work is licensed under a Creative Commons Attribution 4.0 International License.