Interaction of DMAZ and TEMED - A DFT Treatise

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: DMAZ, TEMED, TMEDA, hypergolic, explosives, DFT


In the present study, interaction of DMAZ and TEMED has been investigated within the limitations of density functional theory at the level of B3LYP/6-31++G(d,p). DMAZ is an explosive material but it is also oxidant constituent of some hypergolic systems. TEMED or TEMEDA acts as the partner of DMAZ. The interaction has been investigated and the findings reveal that in the absence of any hypergolic reaction, the interaction is of mainly electrostatic in nature, no bond cleavages or new bond formations happen. The variations are only of conformational in character. The composite is electronically stable in the static conditions and thermally favorable. Some quantum chemical, electronic and spectral data have been collected and discussed.


Jyoti, B.V.S., Naseem, M.S., & Baek, S.W. (2017). Hypergolicity and ignition delay study of pure and energized ethanol gel fuel with hydrogen peroxide. Combustion and Flame, 176, 318-325.

da Silva, G., & Iha, K. (2012). Hypergolic systems: A review in patents. J. Aerosp. Technol. Manag., São José dos Campos, 4(4), 407-412.

U.S. Patent Number: 7,954,754 (2011). Hypergolic liquid or gel fuel mixtures, Application number: 12,131,248, Date of Patent: 7 Jun (2011). U.S. Army combat capabilities development command aviation & missile center.

Di Salvo, R. (2012). High energy, low temperature gelled bi-propellant formulation preparation method. U.S. Patents 2012/0073713 A1.

Hawkins, T.W., Schneider, S., Drake, G.W., Vaghjiani, G., & Chambreau, S. (2011). Hypergolic fuels. U.S. Patents 8,034,202 B1.

Koppes, W.M., Rosenberg, D.M., Clark, K.A., Schlegel, E.S., Vos, B.W., Lang, J.W., & Warren, A.D. (2010). Reagents for hypergolic ignition of nitroarenes. U.S. Patents 7,648,602 B1.

Natan, B., Valeriano, P., & Yair, S. (2011). Hypergolic ignition system for gelled rocket propellant. World Intellectual Property Organization, WO2011/001435 A1.

Sengupta, D. (2008). High performance, low toxicity hypergolic fuel. U.S. Patents 2008/0202655 A1.

Smith, J.R., Ogden, G.E., Brown, C.J., Frisby, P.M., & Torabzadeh, S.A. (2010). Hydroxyethylhydrazinium nitrate-acetone formulations and methods of making hydroxyethylhydrazinium nitrate-acetone formulations. U.S. Patents 2010/0287824 A1.

Watkins, W.B., (2004). Hypergolic fuel system. U.S. Patents US2004/0177604 A1.

Lauck, F., Negri, M., Freudenmann, D., & Schlechtriem, S. (2019). Study on hypergolic ignition of ionic liquid solutions. 8th European Conference for Aeronautics and Space Sciences (EUCASS), 1-10.

Melof, B., Grube, M., Sun, C., Tang, S., & Zhang, X. (2017). Role of cation structures for energetic performance of hypergolic ionic liquids. Energy & Fuels, 31, 10055-10059.

Kang, H., & Kwon, S. (2017). Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide. Acta Astronautica, 137, 25-30.

Schneider, S., Hawkins, T., Ahmed, Y., Rosander, M., Mills, J., & Hudgens, L. (2011). Green hypergolic bipropellants: H2O2 / hydrogen-rich ionic liquids. Agnewande Chemie International Edition, 50, 5886-5888.

Kan, B. , Heister, S., & Paxson, D. (2017). Experimental study of pressure gain combustion with hypergolic rocket propellants. Journal of Propulsion and Power, 33, 112-120.

Kurilov, M., Kirchberger, C., Freudenmann, D., Siefel, A., & Ciezki, H. (2018). A method for screening and identification of green hypergolic bipropellants. International Journal of Energetic Materials and Chemical Propulsion, 17(3), 183-203.

Kim, Y.-S., Son, G.-H., Na, T.-K., & Choi, S.-H. (2015). Synthesis and physical and chemical properties of hypergolic chemicals such as N,N,N-trimethylhydrazinium and 1-ethyl-4-methyl-1,2,4-triazolium salts. Applied Sciences, 5(4), 1547-1559.

Chinnam, A., Petrutik, N., Wang, K., Shlomovich, A., Shamis, O., Toy, D., Suceska, M., Yan, Q.-L., Dobrovetsky, R., & Gozin, M. (2018). Effects of closo-icosahedral periodoborane salts on hypergolic reactions of 70% H2O2 with energetic ionic liquids. Journal of Materials Chemistry A, 6, 19989-19997.

Daimon, W., Gotoh, Y., & Kimura, I. (2012). Mechanism of explosion induced by contact of hypergolic liquids, J. Propulsion, 7(6), 946-952.

Pourpoint, T.L., & Anderson, W.E. (2007). Hypergolic reaction mechanisms of catalytically promoted fuels with rocket grade hydrogen peroxide, Combustion Science and Technology, 10, 2107-2133.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. 37.785

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Pakdehi, S.G., Rezaei, S., Motamedoshariati, H., & Keshavarz, M.H. (2014). Sensitivity of dimethyl amino ethyl azide (DMAZ) as a non-carcinogenic and high performance fuel to some external stimuli. Journal of Loss Prevention in the Process Industries, 29, 277- 282.

Türker, L. (2011). Recent developments in the theory of explosive materials. In J. Thomas (Ed.). Explosive materials (pp. 1-52). New York: NOVA Pub.

Barrow, G.M. (1962). Introduction to molecular spectroscopy. Tokyo: McGraw-Hill (Int. Student Ed.).

Harris, D.C., & Bertolucci, M.D. (1978). Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. New York: Oxford University Press.

Ayers, P.W., & Parr, R.G. (2000). Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited, J. Am. Chem. Soc., 122, 2010-2018.

Hampton, C.S., Ramesh, K.K., & Smith, J.E. (2003). Importance of chemical delay time in understanding hypergolic ignition behaviors. AIAA-2003-1359. 41st Aerospace Sciences Meeting and Exhibit.

How to Cite
Türker, L. (2022). Interaction of DMAZ and TEMED - A DFT Treatise. Earthline Journal of Chemical Sciences, 9(2), 163-176.