Effect of Isotopic Nitrogen Exchange on NTO Molecule-A DFT Approach

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: NTO, isotopic exchange, explosive, tautomerism, density functional


5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), is an insensitive energetic material. It is one of the most studied nitrotriazole type explosives. In the present study, a set of NTO molecules subjected to 15N exchange one at a time have been investigated in terms of energies within the realm of density functional theory at the level of B3LYP/6-311++G(d,p). The effect of isotopic exchanged type perturbation on the infra red frequencies and intensities have been searched. Also, the lactam/lactim tautomerism involving NTO and its 15N exchanged derivatives are studied and discussed.


Yuxiang, O., Boren, C., Jiarong, L., Shuan, D., Jianjuan, L., & Huiping. J. (1994). Synthesis of nitro derivatives of triazoles. Heterocycles, 38, 1651-1664. https://doi.org/10.3987/REV-93-SR21

Rothgery, E.F., Audette, D.E., Wedlich, R.C., & Csejka, D.A. (1991). The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and accelerating rate calorimetry (ARC). Thermochim. Acta, 185(2), 235-243. https://doi.org/10.1016/0040-6031(91)80045-K

Beard, B.C., & Sharma, J., (1993). Early decomposition chemistry of NTO (3-nitro-1,2,4- triazol-5-one). J. Energ. Mater., 11(4-5), 325-343. https://doi.org/10.1080/07370659308019715

Xie, Y., Hu, R., Wang, X., Fu, X., & Zhunhua, C. (1991). Thermal behavior of 3-nitro- 1,2,4-triazol-5- one and its salts. Thermochim. Acta, 189, 283-296. https://doi.org/10.1016/0040-6031(91)87126-H

Manchot, V.W., & Noll, R. (1905). Triazole derivatives. Justus Liebigs Ann. Chem., 343, 1-27.

Kroger, C.F., Mietchen, R., Fank, H., Siemer, M., & Pilz, S. (1969). 1,2,4-Triazoles. XVII. Nitration and bromination of 1,2,4-triazolinones. Chem. Ber., 102, 755-766. https://doi.org/10.1002/cber.19691020307

Lee, K.Y., & Coburn, M.D. (1985). 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive, Report, 7 pp. (LA-10302-MS; Order No. DE86009787).

Wang, Y.M., Chen, C., & Lin, S.T. (1999). Theoretical studies of the NTO unimolecular decomposition. J. Mol. Struct. (THEOCHEM), 460, 79-102. https://doi.org/10.1016/S0166-1280(98)00308-X

Türker, L., & Atalar, T. (2006). Quantum chemical study on 5-nitro-2,4-dihydro-3H- 1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. Journal of Hazardous Materials, A137, 1333-1344. https://doi.org/10.1016/j.jhazmat.2006.05.015

Türker, L. (2021). A composite of NTO and TNAZ-A DFT treatment. Earthline Journal of Chemical Sciences, 5(2), 261-274. https://doi.org/10.34198/ejcs.5221.261274

Jiang, L., Fu, X., Fan, X., Li, J., Xie, W., Zhou, Z., & Zhang, G. (2021). Study on 5- nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) decomposition using online photoionization mass spectrometry and theoretical simulations. FirePhysChem, 1(2), 109-115. https://doi.org/10.1016/j.fpc.2021.04.003

Viswanath, D.S., Ghosh, T.K., & Boddu, V.M. (2018). 5-Nitro-2,4-dihydro-3H-1,2,4- triazole-3-one (NTO). In: Emerging energetic materials: synthesis, physicochemical, and detonation properties. Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1201-7_5

Sreedhar, S., Rao, E.N., Kumar, G.M. Tewari, S.P., & Rao, S.V. (2013). Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 87(1), 121-129. https://doi.org/10.1016/j.sab.2013.05.006

Türker, L., & Bayar, Ç.Ç. (2012). NTO-picryl constitutional isomers—A DFT study. Journal of Energetic Materials, 30(1), 72-96. https://doi.org/10.1080/07370652.2010.543005

Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB. 37.785

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Barrow, G.M. (1962). Introduction to molecular spectroscopy. Tokyo: McGraw-Hill (Int. Student Ed.).

Harris, D.C., & Bertolucci, M.D. (1978). Symmetry and spectroscopy, an introduction to vibrational and electronic spectroscopy. New York: Oxford University Press.

Hehre, W.J., Shustermann, A.J., & Huang, W.W. (1998). A lab book of organic chemistry. Irvine, CA: Wavefunction.

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Fleming, I. (1976). Frontier orbitals and organic chemical reactions. London: Wiley.

How to Cite
Türker, L. (2022). Effect of Isotopic Nitrogen Exchange on NTO Molecule-A DFT Approach. Earthline Journal of Chemical Sciences, 8(2), 193-204. https://doi.org/10.34198/ejcs.8222.193204