Effect of Nitro-Iodyl Group Replacement on TNT - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: dinitroiodoxytoluenes, dinitroiodyltoluenes, TNT, explosive, DFT


The present density functional treatment (B3LYP/6-311++G(d,p)) within the restrictions of the theory and the basis set employed, considers perturbational effects at the molecular level by the replacement of one of the nitro groups of 2,4,6-trinitro toluene (TNT) with iodyl moiety. The process yield two iodyl isomers which are stable electronically and structurally. Various quantum chemical, IR and UV-VIS spectral properties are investigated and compared with the respective values of TNT. The nitro-iodyl group replacement causes narrowing of the interfrontier molecular orbital gap and increases the impact sensitivity of the systems considered.


Zhdankin, V.V. (2013). Hypervalent iodine chemistry: Preparation, structure and synthetic applications of polyvalent iodine compounds. Chichester: John Wiley & Sons.

Banks, D.F. (1966). Organic polyvalent iodine compounds. Chem. Rev., 66, 243-266. https://doi.org/10.1021/cr60241a001

Varvoglis, A. (1981). Aryliodine(III) dicarboxylates. Chem. Soc. Rev., 10, 377-407. https://doi.org/10.1039/CS9811000377

Varvoglis, A. (1984). Polyvalent iodine compounds in organic synthesis. Synthesis, 1984(9), 709-726. https://doi.org/10.1055/s-1984-30945

Moriarty, R.M., & Prakash, O. (1986). Hypervalent iodine in organic synthesis. Acc. Chem. Res., 19, 244-250. https://doi.org/10.1021/ar00128a003

Koser, G.F. (1983). The chemistry of functional groups. Supplement D. In S. Patai & Z. Rappoport (Eds.) (pp. 721-811 and pp. 1265-1351). Chichester: Wiley.

Zhdankin, V.V. (2011). Organoiodine(V) reagents in organic synthesis. J. Org. Chem., 76, 1185-1197. https://doi.org/10.1021/jo1024738

Ladziata, U., & Zhdankin, V.V. (2006). Hypervalent iodine(V) reagents in organic synthesis. ARKIVOC (ix), 26-58.

Katritzky, A.R. Gallos, J.K., & Durst, H.D. (1989). Structure of and electronic interactions in aromatic polyvalent iodine compounds : A 13C NMR study. Magnetıc Resonance in Chemistry, 27, 815-822. https://doi.org/10.1002/mrc.1260270902

Yoshimura, A., & Zhdankin, V.V. (2016). Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 116(5), 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547

Brewster R.Q., & McEven, W.E. (1969). Organic chemistry. New Delhi: Prentice-Hall.

Nesmeyanov A.N., & Nesmeyanov N.A. (1977). Fundamentals of organic chemistry, Moscow: Mir.

Varvoglis, A. (1997). Hypervalent iodine in organic synthesis. Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-714975-2.X5000-5

Durrant, P. J., & Durrant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006), Wavefunction Inc., Irvine CA, USA.

Türker, L. (2011). Recent developments in the theory of explosive materials. In J.T. Jansen (Ed.), Explosive materials (pp. 371-404). New York: NOVA.

Türker, L. (2005). Structure-impact sensitivity relation of some substituted 1,3,5-trinitrobenzene. Journal of Molecular Structure (Theochem), 725, 85-87.

Fleming, I. (1976). Frontier orbitals and organic chemical reactions. London: Wiley.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and IM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

How to Cite
Türker, L. (2022). Effect of Nitro-Iodyl Group Replacement on TNT - A DFT Treatment. Earthline Journal of Chemical Sciences, 8(1), 53-67. https://doi.org/10.34198/ejcs.8122.5367