Effect of Nitro-Iodyl Group Replacement on TNT - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: dinitroiodoxytoluenes, dinitroiodyltoluenes, TNT, explosive, DFT

Abstract

The present density functional treatment (B3LYP/6-311++G(d,p)) within the restrictions of the theory and the basis set employed, considers perturbational effects at the molecular level by the replacement of one of the nitro groups of 2,4,6-trinitro toluene (TNT) with iodyl moiety. The process yield two iodyl isomers which are stable electronically and structurally. Various quantum chemical, IR and UV-VIS spectral properties are investigated and compared with the respective values of TNT. The nitro-iodyl group replacement causes narrowing of the interfrontier molecular orbital gap and increases the impact sensitivity of the systems considered.

Downloads

Download data is not yet available.

References

Zhdankin, V.V. (2013). Hypervalent iodine chemistry: Preparation, structure and synthetic applications of polyvalent iodine compounds. Chichester: John Wiley & Sons.

Banks, D.F. (1966). Organic polyvalent iodine compounds. Chem. Rev., 66, 243-266. https://doi.org/10.1021/cr60241a001

Varvoglis, A. (1981). Aryliodine(III) dicarboxylates. Chem. Soc. Rev., 10, 377-407. https://doi.org/10.1039/CS9811000377

Varvoglis, A. (1984). Polyvalent iodine compounds in organic synthesis. Synthesis, 1984(9), 709-726. https://doi.org/10.1055/s-1984-30945

Moriarty, R.M., & Prakash, O. (1986). Hypervalent iodine in organic synthesis. Acc. Chem. Res., 19, 244-250. https://doi.org/10.1021/ar00128a003

Koser, G.F. (1983). The chemistry of functional groups. Supplement D. In S. Patai & Z. Rappoport (Eds.) (pp. 721-811 and pp. 1265-1351). Chichester: Wiley.

Zhdankin, V.V. (2011). Organoiodine(V) reagents in organic synthesis. J. Org. Chem., 76, 1185-1197. https://doi.org/10.1021/jo1024738

Ladziata, U., & Zhdankin, V.V. (2006). Hypervalent iodine(V) reagents in organic synthesis. ARKIVOC (ix), 26-58.

Katritzky, A.R. Gallos, J.K., & Durst, H.D. (1989). Structure of and electronic interactions in aromatic polyvalent iodine compounds : A 13C NMR study. Magnetıc Resonance in Chemistry, 27, 815-822. https://doi.org/10.1002/mrc.1260270902

Yoshimura, A., & Zhdankin, V.V. (2016). Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 116(5), 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547

Brewster R.Q., & McEven, W.E. (1969). Organic chemistry. New Delhi: Prentice-Hall.

Nesmeyanov A.N., & Nesmeyanov N.A. (1977). Fundamentals of organic chemistry, Moscow: Mir.

Varvoglis, A. (1997). Hypervalent iodine in organic synthesis. Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-714975-2.X5000-5

Durrant, P. J., & Durrant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006), Wavefunction Inc., Irvine CA, USA.

Türker, L. (2011). Recent developments in the theory of explosive materials. In J.T. Jansen (Ed.), Explosive materials (pp. 371-404). New York: NOVA.

Türker, L. (2005). Structure-impact sensitivity relation of some substituted 1,3,5-trinitrobenzene. Journal of Molecular Structure (Theochem), 725, 85-87.

Fleming, I. (1976). Frontier orbitals and organic chemical reactions. London: Wiley.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and IM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

Published
2022-03-25
How to Cite
Türker, L. (2022). Effect of Nitro-Iodyl Group Replacement on TNT - A DFT Treatment. Earthline Journal of Chemical Sciences, 8(1), 53-67. https://doi.org/10.34198/ejcs.8122.5367
Section
Articles