Some Isomers of TNABN - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TNABN, tetranitrotetraazabicyclononanone, K56, explosive, DFT

Abstract

TNABN is a nitrourea derivative. Isomers presently considered comprise both the configurational and constitutional forms of TNABN (K56, C5H6N8O9). Density functional theory (DFT) has been employed at the level of RB3LYP/6-31++G(D,P). Within the restrictions of the level of calculations, the work has revealed that all the isomers considered are electronically stable and follow the stability order of Cis > Cis-iso > Trans > Trans-iso. Various physicochemical and quantum chemical properties of the isomers were obtained and discussed. The HOMO-LUMO energy separation falls in to the order of Cis-iso < Cis < Trans-iso < Trans. Thus, Cis-iso isomer should be more susceptible to impact stimulus because there exists a reverse correlation between the impact sensitivity and HOMO-LUMO energy separation value.

References

Agrawal, J.P., & Hodgson, R.D. (2007). Organic chemistry of explosives. Chichester (England): Wiley.

Graindorge, H.R., & Lescrop, P.A. (1995). Synthesis of 2,5,7,9-tetranitro- tetraazabicyclo(4,3,0)nonanone (K56) and derivatives. United States: American Chemical Society (ACS) National Meeting, Anaheim, CA (United States), 2-6 Apr 1995.

Fedoroff, B.T., Aaronson, H.A., Reese, E.F., Sheffield, O.E., Clift, G.D., Dunkle, C.G., Walter, H., & McLean, D.C. (1960). Encyclopedia of explosives and related items, vol. 1, p. A65, Dover, NJ: Picatinny Arsenal.

Pagoria, P.F., Mitchell, A.R., & Jessop, E.S. (1996). Nitroureas 11. Synthesis of bicyclic mono- and dinitrourea compounds, Propellants Explos. Pyrotech., 21, 14-18. https://doi.org/10.1002/prep.19960210104

Cui, K., Xu, G., Xu, Z., Wang, P., Xue, M., Meng, Z., Li, J., Wang, B., Ge, Z., & Qin, G. (2014). Synthesis and characterization of a thermally and hydrolytically stable energetic material based on N-nitrourea, Propellants Explos. Pyrotech., 39(5), 662-669. https://doi.org/10.1002/prep.201300100

Boileau, J., Emeury, J.M.L., & Kehren, J.P. (1984). Tetranitroglycoluril and method of preparation thereof, US Pat. US4487938A.

Graindorge, H.R., Lescop, P.A., Pouet, M.J., & Terrier, F. (1996). in: Nitration: Recent Laboratory and Industrial Developments, ACS Symposium Series, 623, (Eds: Albright, L.F., Carr, R.V.C., & Schmitt, R.J.), Washington, DC: Am. Chem. Soc., Ch.5, 43-50. https://doi.org/10.1021/bk-1996-0623.ch005

Butcher, R.J., Evans, R., & Gilardi, R. (2004). 2,5,7-Trinitro-2,5,7,9- tetraazabicyclo[4.3.0]-nonan-8-one, Acta Cryst. E, 60(8), 1376-1378. https://doi.org/10.1107/S1600536804017301

George, C., Gilardi, R., & Flippen-Anderson, J.L. (1992). Structure of 7-acetyl-2,5,9- trinitro-2,5,7,9-tetraazabicyclo[4.3.0]nonan-8-one, Acta Cryst. C, 48(8), 1527-1528. https://doi.org/10.1107/S0108270191014956

Jin, X., Hu, B., Jia, H., Liu, Z., & Lu, C., (2014). DFT theoretical study of energetic nitrogen-rich C4N6H8-n(NO2)n derivatives, Quim Nova, 37(1), 74-80. https://doi.org/10.1590/S0100-40422014000100014

Pagoria, P.F., Lee, G.S., Mitchell, A.R., & Schmidt, R.D. (2002). A review of energetic materials synthesis, Thermochimica Acta, 384(1-2), 187-204. https://doi.org/10.1016/S0040-6031(01)00805-X.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules, London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006), Wavefunction Inc., Irvine CA, USA.

Fleming, I. (1976). Frontier orbitals and organic chemical reactions. London: Wiley.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and IM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

Published
2022-02-15
How to Cite
Türker, L. (2022). Some Isomers of TNABN - A DFT Treatment. Earthline Journal of Chemical Sciences, 7(2), 153-163. https://doi.org/10.34198/ejcs.7222.153163
Section
Articles