Peroxide Based Organic Explosives

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: peroxide explosives, TATP, HMTD, TMDD, detection

Abstract

In recent years progressively increasing terrorist activities, which use homemade explosives; such as acetone peroxide and other cyclic organic peroxides have led to worldwide awareness by security and defense agencies. Then the development of methodologies for the detection of cyclic organic peroxides have become an urgent need. Until quite recently, most of the current technology in use for trace detection of explosives had been unable to detect these energetic compounds. Differences in physical properties between cyclic organic peroxides is the main barrier for the development of a general method for analysis and detection of the peroxide explosives. In this short review, the most relevant contributions related to preparation, characterization and detection of the most important cyclic organic peroxides have been presented. It also includes few recent investigations about the toxicity and metabolism of some peroxide explosives.

References

T.M. Klapötke, Chemistry of High Energy Materials, Berlin: De Gruyter, 2011. https://doi.org/10.1515/9783110439335

R. Matyas and J. Pachman, Primary Explosives, Berlin: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-642-28436-6

E.A. Espinosa-Fuentes, A.J. Peña-Quevedo, L.C. Pacheco-Londoño, R. Infante-Castillo and S.P. Hernández-Rivera, A Review of Peroxide Based Homemade Explosives: Characterization and Detection, in: Explosive Materials: Classification, Composition and Properties; Chemical Engineering Methods and Technology Series, (Editor: Janssen T.J.), NY: Nova Science Publishers, Inc., 2010.

G. Rarata and J. Smętek, Explosives based on hydrogen peroxide - A historical review and novel applications, Materiały Wysokoenergetyczne / High-Energetic Materials 8 (2016), 56-62.

M.S. Bali, Novel strategies for the safe chemical degradation of organic peroxide explosives: A mechanistic investigation, PhD thesis, School of Physical, Environmental and Mathematical Sciences, The University College, UNSW Canberra, November, 2014.

N.A. Milas and A. Golubovic, Studies in organic peroxides. XXV. Preparation, separation and identification of peroxides derived from methyl ethyl ketone and hydrogen peroxide, J. Am. Chem. Soc. 81(21) (1959), 5824-5826. https://doi.org/10.1021/ja01530a068

E. Riedel and C.H. Janiak, Anorganische Chemie, Berlin: Walter de Gruyter, 2007. https://doi.org/10.1515/9783110206869-011

G.P. Kennedy, Vengeance Weapon 2: The V-2 Guided Missile. Washington DC: Smithsonian Institution Press, 1983.

B.J. Ford, Secret Weapons, Oxford: Osprey Publishing, 2011.

J. Christpher, The Race for Hitler’s X-Planes, The Mill, Gloucestershire: History Press, 2013.

R. Wolffenstein, Ueber die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd, Ber. Dtsch. Chem. Ges. 28(2) (1895), 2265-2269. https://doi.org/10.1002/cber.189502802208

R. Matyas and J. Pachman, Study of TATP: Influence of reaction conditions on product composition, Propellants Explos. Pyrotech. 35 (2010), 31-37. https://doi.org/10.1002/prep.200800044

H. Jiang, G. Chu, H. Gong and Q. Qiao, Tin chloride catalyzed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide, J. Chem. Res. 28(4) (1999), 288-289. https://doi.org/10.1039/a809955c

K.B. Landenberger, O. Bolton and A.J. Matzger, Two isostructural explosive cocrystals with significantly different thermodynamic stabilities, Angew. Chem. Int. Ed. 52 (2013), 6468-6471. https://doi.org/10.1002/ange.201302814

K. B. Landenberger, O. Bolton and A. J. Matzger, Energetic–energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization, J. Am. Chem. Soc. 137 (2015), 5074-5079. https://doi.org/10.1021/jacs.5b00661

N. Milas, R.S. Harris and A. Golubovic, Detection separation and identification of organic peroxides, Radiation Research Supplement, Vol. 3, Implications of Organic Peroxides in Radiobiology. Proceedings of an International Symposium Sponsored by Division of Biological and Medical Research, Argonne National Laboratory, Argonne, Illinois, May 7- 9, 1962 (1963), pp. 71-92.

B.W. Stiasny, Investigation of Organic Peroxides and Their Properties as Energetic Materials. Ph.D. Dissertation, Ludwig Maximilian University of Munich, Munich, Germany, 2016.

V. Bulatov, O. Reany, R. Grinko, I. Schechter and E. Keinan, Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism, Phys. Chem. Chem. Phys. 15(2013), 6041-6048. https://doi.org/10.1039/c3cp44662j

Y. Li, H. Hao, Q. Zhang and Y. Wu, A broadly applicable mild method for the synthesis of gem-diperoxides from corresponding ketones or 1,3 dioxolanes, Org. Lett. 7 (2009), 1615-1618. https://doi.org/10.1021/ol900262t

N-D.H. Gamage, B. Stiasny, J. Stierstorfer, P.D. Martin, T.M. Klapötke and C.H. Winter, Highly energetic, low sensitivity aromatic peroxy acids, Chem. Eur. J. 22 (2016), 2582-2585. https://doi.org/10.1002/chem.201502989

M.R. Miner and K.A. Woerpel, CuI-catalyzed synthesis of propargyl hydroperoxides using molecular oxygen and hydroxylamines, Eur. J. Org. Chem. 10(2016), 1860-1866. https://doi.org/10.1002/ejoc.201600038

Y. Sun, N. Li, X. Xing, X. Zhang, Z. Zhang, G. Wang, J. Cheng and Z. Hao, Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides, Catalysis Today 327 (2019), 389-397. https://doi.org/10.1016/j.cattod.2018.03.002

T.J. Kim, N.H. Heo, J. Kim and G. Seo, Formation of acetone cyclic triperoxide over titania-incorporated mesoporous materials, React. Kinet. Catal. Lett. 79 (2003), 287-293. https://doi.org/10.1023/A:1024538219186

P. Ghorai and P. Dussault, Mild and efficient Re(VII)-catalyzed synthesis of 1,1- dihydroperoxides, Org. Lett. 20 (2008), 4577-4579. https://doi.org/10.1021/ol801859c

A.E-F. Eduardo, C. P-L. Leonardo and A. B-C. Marcos, Novel uncatalyzed synthesis and characterization of diacetone diperoxide, Propellants Explos. Pyrotech. 37(4) (2012), 413-421. https://doi.org/10.1002/prep.201000130

I.A. Yaremenko, V.A. Vil’, D.V. Demchuk and A.O. Terent’ev, Rearrangements of organic peroxides and related processes, Beilstein J. Org. Chem. 12 (2016), 1647-1748. https://doi.org/10.3762/bjoc.12.162

M.S. Bali, L.Wallace, A.I. Day and D. Armitt, Cyclic pentanone peroxide: Sensitiveness and suitability as a model for triacetone triperoxide, Journal of Forensic Sciences 59 (2014), 936-942. https://doi.org/10.1111/1556-4029.12439

M.S. Bali, D. Armitt, L. Wallace and A.I. Day, Rapid degradation of cyclic peroxides by titanium and antimony chlorides, Dalton Transactions 44 (2015), 6775-6783. http://dx.doi.org/10.1039/c5dt00200a

R.I. Hiyoshi, J. Nakamura and T.B. Brill, Thermal decomposition of organic peroxides TATP and HMTD by T-Jump/FTIR spectroscopy, Propellants Explos. Pyrotech. 32(2) (2007), 127-134. https://doi.org/10.1002/prep.200700002

V.P. Sinditskii, V.I. Kolesov, V.Yu. Egorshev, D.I. Patrikeev and O.V. Dorofeev, Thermochemistry of cyclic acetone peroxides, Thermochimica Acta 585 (2014), 10-15. https://doi.org/10.1016/j.tca.2014.03.046

J. Oxley, J. L. Smith, J. Huang and W. Luo, Destruction of peroxide explosives, Journal of Forensic Sciences 54(5) (2009), 1029-33. https://doi.org/10.1111/j.1556-4029.2009.01130.x

J. C. Oxley, J. L. Smith, and H. Chen, Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP), Propellants, Explosives, Pyrotechnics 27 (2002),209-216. https://doi.org/10.1002/1521-4087(200209)27:4<209::AID-PREP209>3.0.CO;2-J

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt and E. Keinan, Decomposition of triacetone triperoxide is an entropic explosion, J. Am. Chem. Soc. 127 (2005), 4, 1146-1159. https://doi.org/10.1021/ja0464903

Y.B. Tsaplev, Decomposition of cyclic acetone peroxides in acid media, Kinet. Catal. 53 (2012), 521-524. https://doi.org/10.1134/S0023158412050163

T.M. Klapötke and T. Wloka, Peroxide Explosives, Wiley online library, 2014. https://doi.org/10.1002/9780470682531.pat0879

Home-made Explosives, 2016. http://www.3dchem.com/moremolecules.asp?ID=312&othername=TATP

Triacetone Triperoxide (TATP), http://www.globalsecurity.org/military/systems/munitions/tatp.htm

Home-made Explosives, http://www.3dchem.com/molecules.asp?ID=313

Hexamethylene Triperoxide Diamine (HMTD), http://www.3dchem.com/molecules.asp?ID=427

R. Matyás and J. Selesovský, Power of TATP based explosives, J. Hazard. Mater. 165(1-3) (2009), 95-9. https://doi.org/10.1016/j.jhazmat.2008.09.063.

G.J. McKay, Forensic characteristics of organic peroxide explosives (TATP, DADP, and HMTD), Kayaku Gakkaishi (J. of the Japan Explosives Soc.) 63(6) (2002), 323-329.

M. Araos and I.A. Onederra, Study of the detonation process of novel hydrogen peroxide-based explosives using high speed video, Forty-Third Annual Conference on Explosives and Blasting Technique, Orlando, Florida USA, 29 Jan-1 Feb 2017, Cleveland, OH USA: International Society of Explosives Engineers.

L.T. R. Dobson, Ultrasonic Activation of Triacetone Triperoxide, University of Nebraska, 2010.

I. Onederra and M. Araos, Preliminary quantification of the in situ performance of a novel hydrogen peroxide based explosive, Mining Technology 126(2) (2017), 113-122. https://doi.org/10.1080/14749009.2017.1290336

D. Lubczyk, A. Hahma, M. Brutschy, C. Siering and S.R. Waldvogel, A new reference material and safe sampling of terrorists peroxide explosives by a non-volatile matrix, Propellants Explos. Pyrotech. 40(4) (2015), 590-594. https://doi.org/10.1002/prep.201500011

A. Wierzbicki, E.A. Slater, E.A. Cioffi and E.D. Stevens, Density functional theory and X-ray investigations of P- and M-hexamethylene triperoxide diamine and its dialdehyde derivative, J. Phys. Chem. A 105(2001), 8763-8768. https://doi.org/10.1021/jp0123841

H.K. Evans, F.A.J. Tulleners, B.L. Sanchez and C.A. Rasmussen, An unusual explosive, triacetonetriperoxide (TATP), J. Forensic Sci. 31 (1986), 1119-1125. https://doi.org/10.1520/JFS11122J

R. Schulte-Ladbeck, M. Vogel and U. Karst, Recent methods for the determination of peroxide-based explosives, Anal. Bioanal. Chem. 386 (2006), 559-565. https://doi.org/10.1007/s00216-006-0579-y

R. Schulte-Ladbeck, P. Kolla and U. Karst, Trace analysis of peroxide-based explosives, Anal. Chem. 75(4) (2003), 731-735. https://doi.org/10.1021/ac020392n

D.S. Viswanath, T.K. Ghosh and V.M. Boddu, Triacetone Triperoxide (TATP), in: Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Amsterdam: Springer Netherlands, 2018, pp. 273-291.

https://doi.org/10.1007/978-94-024-1201-7

M.S. Meaney and V.L. McGuffin, Luminescence-based methods for sensing and detection of explosives, Anal. Bioanal. Chem. 391 (2008), 2557-2576. https://doi.org/10.1007/s00216-008-2194-6

R. Matyas, J. Pachman and H. Ang, Study of TATP: Spontaneous transformation of TATP to DADP, Propellants Explosives Pyrotechnics 33(2) (2008), 89-91. https://doi.org/10.1002/prep.200700247

G. Buttigieg, A. Knight, S. Denson, C. Pommier and M. Denton, Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry, Forensic Science International 135 (2003), 53-59. https://doi.org/10.1016/S0379-0738(03)00175-0

S.C. Gamble, L.C. Campos and R.M. Morgan, Detection of trace peroxide explosives in environmental samples using solid phase extraction and liquid chromatography mass spectrometry, Environmental Forensics 18(1) (2017), 50-61. https://doi.org/10.1080/15275922.2016.1263901

A. Stambouli, A. El Bouri, T. Bouayoun and M.A. Bellimam, Headspace-GC/MS detection of TATP traces in post-explosion debris, Forensic Science International 146 S (2004) 191-194. https://doi.org/10.1016/j.forsciint.2004.09.060

J. Yinon, Advances in Forensic Applications of Mass Spectrometry, Boca Raton, FL: CRC Press, 2004, p. 279.

J.C. Oxley, J.L. Smith, H. Chen and E. Cioffi, Decomposition of multi-peroxidic compounds: Part II. Hexamethylene triperoxide diamine (HMTD), Thermochimica Acta 388 (1-2) (2002), 215-225. https://doi.org/10.1016/S0040-6031(02)00028-X

B. Báez, S.N. Correa and S.P. Hernandez-Rivera, Transport of explosives II: use of headspace-SPME/GC µ-ECD and TEEM GC/MS for detection of TNT vapors from sand buried samples, Proc. SPIE Int. Soc. Opt. Eng. 5794 (2005), 1263-1271. https://doi.org/10.1117/12.602446

J. Leppert, M. Härtel, T.M. Klapötke and P. Boeker, Hyperfast flow-field thermal gradient GC/MS of explosives with reduced elution temperatures, Anal. Chem. 90 (14) (2018), 8404-8411. https://doi.org/10.1021/acs.analchem.8b00900

S.N. Correa-Torres, M. De Jesús, N. Mina-Camilde, M.E. Castro, A. Blanco, S.P. Hernandez-Rivera, R.B. Cody and J.A. Laramee, Improved detection of landmine components: using TEEM-GC-MS for detection of TNT and RDX in soil and other complex matrices, Proc. SPIE Int. Soc. Opt. Eng. 5089 (2003), 1001-1011. https://doi.org/10.1117/12.487224

V. Florian, A. Cabanzo, B. Baez, S. Correa, M. Irrazabal, J. G. Briano, M. E. Castro and S.P. Hernandez-Rivera, Detection of the spectroscopic signatures of explosives and their degradation products, Proc. SPIE Int. Soc. Opt. Eng. 5794 (2005), 724-728.

J.C. Oxley, J.L. Smith, L.J. Kirschenbaum, S. Marimganti and S. Vadlamannati, Detection of explosives in hair using ion mobility spectrometry, J Forensic Sci. 53(3) (2008), 690-3. https://doi.org/10.1111/j.1556-4029.2008.00719.x

A. J. Peña-Quevedo, R. Cody, N. Mina-Camilde, M. Ramos, and S. P. Hernandez- Rivera, Characterization and differentiation of high energy amine peroxides by direct analysis in real time TOF/MS, Proc. SPIE 6538 (2007), 653828-12. https://doi.org/10.1117/12.720577

W.P. Schaefer, J.T. Fourkas and B.G. Tiemann, Structure of hexamethylene triperoxide diamine, J. Am. Chem. Soc. 107(8) (1985), 2461-2463. https://doi.org/10.1021/ja00294a043

X. Xu, A.M. van de Craats, E.M. Kok and P.C. de Bruyn, Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications, J. Forensic Sci. 49 (6) (2004), 1230-6.

R.B. Cody, J.A. Laramee and H.D. Durst, Versatile new ion source for the analysis of materials in open air under ambient conditions, Anal. Chem. 77 (2005), 2297-2302. https://doi.org/10.1021/ac050162j

C.H. Arnaud, Open-air ionization methods minimize sample prep and widen range of mass spectrometry applications, Chemical & Engineering News 85(2007), 13-18.

Cody, R. B. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source, Anal. Chem. 81 (2009), 1101-1107. https://doi.org/10.1021/ac8022108

M. Kirchner, E. Matisová, S. Hrouzková and H. Renáta, Fast GC and GC-MS analysis of explosives, Petroleum and Coal 49 (2) (2007), 72-79.

M. Yin, C. Zhang, J. Li, H. Li, Q. Deng and S. Wang, Highly sensitive detection of benzoyl peroxide based on organoboron fluorescent conjugated polymers, Polymers (Basel) 11(10) (2019), 1655. https://doi.org/10.3390/polym11101655

R.G. Ewing, D.A. Atkinson, G.A. Eiceman and G.J. Ewing, A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds, Talanta 54(3) (2001), 515-529. https://doi.org/10.1016/S0039-9140(00)00565-8

A.B. Kanu and H.H. Hill Jr, Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas, Talanta 73 (2007), 692-699. https://doi.org/10.1016/j.talanta.2007.04.058

H. Shahraki, M. Tabrizchi and H. Farrokhpor, Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization, J. Hazard. Mater. 357 (2018), 1-9. https://doi.org/10.1016/j.jhazmat.2018.05.054

W. Xua, Y. Fu , Y. Gao, J. Yao, T. Fan, D. Zhu, Q. He, H. Cao and J. Cheng, A simple but highly efficient multi-formyl phenol/amine system for fluorescence detection of peroxide explosive vapor, ChemComm. (2013), 1-4. https://doi.org/10.1039/x0xx00000x

J.C. Oxley, J.L. Smith, M. Porter, L. McLennan, K. Colizza, Y. Zeiri, R. Kosloff, and F. Dubnikova, Synthesis and degradation of hexamethylene triperoxide diamine (HMTD), Propellants Explos. Pyrotech. 41 (2016), 334-350. https://doi.org/10.1002/prep.201500151

J. Oxley, J. Zhang, J. Smith and E. Cioffi, Mass spectra of unlabeled and isotopically labeled hexamethylene triperoxide diamine (HMTD), Propellants Explos. Pyrotech. 25(6) (2000), 284-287. https://doi.org/10.1002/1521-4087(200012)25:6<284::AID- PREP284>3.0.CO;2-X

J.M. Dreyfors, S.B. Jones, and Y. Sayed, Hexamethylenetetramine: A Review, Am. Ind. Hygiene Assoc. J. 50(1989), 579-585. https://doi.org/10.1080/15298668991375191

E. Almenar, A.M. Costero, P. Gaviña, S. Gil and M. Parra, Towards the fluorogenic detection of peroxide explosives through host–guest chemistry, R. Soc. Open Sci. 5 (2018), 171787. http://dx.doi.org/10.1098/rsos.171787

J. Wang, Electrochemical sensing of explosives, Electroanalysis 19 (2007), 415-423. https://doi.org/10.1002/elan.200603748

C. Bauer, U. Willer, R. Lewicki, A. Pohlkötter, A. Kosterev, D. Kosynkin, F.K. Tittel and W. Schade, A Mid-infrared QEPAS sensor device for TATP detection, J. Phys. Conf. Ser. 157 (2009), 012002. https://doi.org/10.1088/1742-6596/157/1/012002)

L. Widmer, S. Watson, K. Schlatter and A. Crowson, Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP), Analyst 127 (2002), 1627-1632. https://doi.org/10.1039/B208350G

Y. Zhang, X. Ma, S. Zhang, C. Yang, Z. Ouyang and X. Zhang, Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry, Analyst 134 (2008), 176-181. https://doi.org/10.1039/B816230A

S. Girotti, E. Ferri, E. Maiolini, L. Bolelli, M. D’Elia, D. Coppe and F.S. Romolo, A quantitative chemiluminescent assay for analysis of peroxide-based explosives, Anal., Bioanal. Chem. 400 (2011), 313-320. https://doi.org/10.1007/s00216-010-4626-3

M.A. Walter, U. Panne and M.G. Weller, A novel immunoreagent for the specific and sensitive detection of the explosive triacetone triperoxide (TATP), Biosensors 1 (2011), 93-106. https://doi.org/10.3390/bios1030093

E. Sella and D. Shabat, Self-immolative dendritic probe for direct detection of triacetone triperoxide, Chem. Commun. (2008), 5701-5703. https://doi.org/10.1039/b814855d

M.E. Germain and M.J. Knapp, Turn-on fluorescence detection of H2O2 and TATP, Inorg. Chem. 47 (2008), 9748-9750. https://doi.org/10.1021/ic801317x

H. Lin and K.S. Suslick, A colorimetric sensor array for detection of triacetone triperoxide vapor, J. Am. Chem. Soc. 132(44) (2010), 15519-15521. https://doi.org/10.1021/ja107419t

Z. Li, W.P. Bassett, J.R. Askim and K.S. Suslick, Differentiation among peroxide explosives with an optoelectronic nose, Chem. Commun. 51 (2015), 15312-15315. https://doi.org/10.1039/C5CC06221G

J.R. Askim, Z. Li, M.K. LaGasse, J.M. Rankin and K.S. Suslick, An optoelectronic nose for identification of explosives, Chem. Sci. 7 (2016), 199-206. https://doi.org/10.1039/C5SC02632F

Ş. Eren, A. Üzer, Z. Can, T. Kapudan, E. Erçağ and R. Apak, Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor, Analyst 135 (2010), 2085-2091. https://doi.org/l0.1039/b925653a

Z. Can, A. Üzer, K. Türkekul, E. Erçağ and R. Apak, Determination of triacetone triperoxide with a N,N-Dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles, Anal. Chem. 87 (2015), 9589-9594. https://doi.org/10.1021/acs.analchem.5b01775

K. Colizza, A. Yevdokimov, L. McLennan, J.L. Smith and J. C. Oxley, Reactions of organic peroxides with alcohols in atmospheric pressure chemical ionization—the pitfalls of quantifying triacetone triperoxide (TATP), J. Am. Soc. Mass Spectrom. 29 (2018), 393Y404. https://doi.org/10.1007/s13361-017-1836-3

K. Colizza, K.E. Mahoney, A.V. Yevdokimov, J.L. Smith and J.C. Oxley, Acetonitrile ion suppression in atmospheric pressure ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 27(2016), 1796-1804. https://doi.org/10.1007/s13361-016-1466-1

D. Rondeau, R. Vogel and J.-C. Tabet, Unusual atmospheric pressure chemical ionization conditions for detection of organic peroxides, Sect. Title Org. Anal. Chem. 38 (2003), 931-940. https://doi.org/10.1002/jms.501

K. Colizza, M. Porter, J.L. Smith and J.C. Oxley, Gas-phase reactions of alcohols with hexamethylene triperoxide diamine (HMTD) under atmospheric pressure chemical ionization conditions, Rapid Commun. Mass Spectrom. 29 (2014), 74-80. https://doi.org/10.1002/rcm.7084

G.A. Newsome, L.K. Ackerman and K.J. Johnson, Humidity effects on fragmentation in plasma-based ambient ionization sources, J. Am. Soc. Mass Spectrom. 27 (2016), 135-143. https://doi.org/10.1007/s13361-015-1259-y

T-W. Chen, Z-H. Sheng, K. Wang, F-B. Wang and X-H. Xia, Determination of explosives using electrochemically reduced graphene, Chem. Asian J. 6 (2011), 1210-1216. https://doi.org/10.1002/asia.201000836

F. Zapata, Á. F. la Ossa, E. Gilchrist, L. Barron and C. García-Ruiz, Progressing the analysis of improvised explosive devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography, Talanta 161 (2016), 219-227. https://doi.org/10.1016/j.talanta.2016.05.057

L. Dunn, H.S.A. Al Obaidly and S. E. Khalil, Development and validation of fast liquid chromatography high-resolution mass spectrometric (LC-APCI-QToF-MS) methods for the analysis of hexamethylene triperoxide diamine (HMTD) and triacetone triperoxide (TATP), Forensic Chemistry 10 (2018), 5-14. https://doi.org/10.1016/j.forc.2018.06.003

K. Hakansson, R.V. Coorey, R.A. Zubarev, V.L. Talrose and P. Hakansson, Low-mass ions observed in plasma desorption mass spectrometry of high explosives, J. Mass Spectrom. 35 (2000), 337-346.

S. Girotti, E. Ferri, E. Maiolini, L. Bolelli, M. D’Elia, D. Coppe and F.S. Romolo, A quantitative chemiluminescent assay for analysis of peroxide-based explosives, Anal. Bioanal. Chem. 400 (2011), 313-320. https://doi.org/10.1007/s00216-010-4626-3

T.P. Forbes and E. Sisco, Recent advances in ambient mass spectrometry of trace explosives, The Analyst 143(9) (2018), 1948-1969. https://doi.org/10.1039/C7AN02066J

D. Lubczyk, C. Siering, J. Lörgen, Z.B. Shifrina, K. Müllen and S.R. Waldvogel, Simple and sensitive online detection of triacetone triperoxide explosive, Sensors and Actuators B: Chemical. 143(2) (2010), 561-566. https://doi.org/10.1016/j.snb.2009.09.061

S. Malashikhin and N.S. Finney, Fluorescent signaling based on sulfoxide profluorophores: application to the visual detection of the explosive TATP, J. Am. Chem. Soc. 130(39) (2008), 12846-12847. https://doi.org/10.1021/ja802989v

X. Lü, P. Hao, G. Xie, J. Duan, L. Gao and B. Liu. A sensor array realized by a single flexible TiO2/POMs film to contactless detection of triacetone triperoxide, Sensors 19 (2019), 915 (1-12). https://doi.org/10.3390/s19040915

R.S. Ray, B. Sarma, S. Mohanty and M. Misra, Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO2 substrate, Talanta 118 (2014), 304-311. https://doi.org/ 10.1016/j.talanta.2013.09.057

S. Banerjee, S.K. Mohapatra, M. Misra and I.B. Mishra, The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor, Nanotechnology 20 (2009), 75502 (1-6). https://doi.org/10.1088/0957-4484/20/7/075502

X. Yu, Y. Gong, W. Xiong, M. Li, J. Zhao and Y. Che, Turn-on Fluorescent detection of hydrogen peroxide and triacetone triperoxide via enhancing interfacial interactions of a blended system, Anal. Chem. 91(11) (2019), 6967-6970. https://doi.org/10.1021/acs.analchem.9b01255

Q. Sun, Z. Wu, H. Duan and D. Jia, Detection of triacetone triperoxide (TATP) precursors with an array of sensors based on MoS2/RGO composites, Sensors 19 (2019), 1281(1-13). https://doi.org/10.3390/s19061281

M.J. Song, S.W. Hwang and D. Whang, Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection, Talanta 80 (2010), 1648-1652. https://doi.org/10.1016/j.talanta.2009.09.061

L. Luo, F. Li, L. Zhu, Z. Zhang, Y. Ding and D. Deng, Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode, Electrochim. Acta 77 (2012), 179-183. https://doi.org/10.1016/j.electacta.2012.05.108

J-Y. Shen, M-D. Wang, Y-F. Wang, J-Y. Hu, Y. Zhu, Y.X. Zhang, Z-J. Li and H-C. Yao, Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor, Sens. Actuators B Chem. 256 (2018), 27-37. https://doi.org/10.1016/j.snb.2017.10.073

I. Osica, G. Imamura, K. Shiba, Q. Ji, L.K. Shrestha, J.P. Hill, K.J. Kurzydlowski, G. Yoshikawa and K. Ariga, Highly networked capsular silica-porphyrin hybrid nanostructures as efficient materials for acetone vapor sensing, ACS Appl. Mater. Interfaces 9 (2017), 9945-9954. https://doi.org/10.1021/acsami.6b15680

Y.J. Jeong, W.T. Koo, J.S. Jang, D.H. Kim, M.H. Kim and I.D. Kim, Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor, ACS Appl. Mater. Interfaces 10 (2018), 2016-2025. https://doi.org/10.1021/acsami.7b16258

D. Lu, A. Cagan, R.A.A. Munoz, T. Tangkuaram and J. Wang, Highly sensitive electrochemical detection of trace liquid peroxideexplosives at a Prussian-blue ‘artificial-peroxidase’ modified electrode, Analyst 131 (2006), 1279-1281. https://doi.org/10.1039/B613092E

R.A. Munoz, D. Lu, A. Cagan and J. Wang, One-step simplified electrochemical sensing of TATP based on its acid treatment, The Analyst 132(6) (2007), 560-565. https://doi.org/10.1039/b701356f

Y. Xie and I.F. Cheng, Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry, Microchem. J. 94 (2010), 166-170. https://doi.org/10.1016/j.microc.2009.10.016

V. Dobrokhotov, L. Oakes, D. Sowell, A. Larin, J. Hall, A. Kengne, P. Bakharev, G. Corti, T. Cantrell and T. Prakash, Toward the nanospring-based artificial olfactory system for trace-detection of flammable and explosive vapors, Sens. Actuators B Chem. 168 (2012), 138-148. https://doi.org/10.1016/j.snb.2012.03.074

W.H. Zhang, W.D. Zhang and L.Y. Chen, Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor, Nanotechnology 21 (2010), 315502. https://doi.org/10.1088/0957-4484/21/31/315502

J. Warmer, P. Wagner, M.J. Schöning and P. Kaul, Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors: Detection of triacetone triperoxide, Phys. Status Solidi A Appl. Mater. Sci. 212(2015), 1289-1298. https://doi.org/10.1002/pssa.201431882

J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner and B.H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano 3 (2009), 301-306. https://doi.org/10.1021/nn800593m

W. Yuan and G. Shi, Graphene-based gas sensors, J. Mater. Chem. A 1 (2013), 10078-10091. https://doi.org/10.1039/C3TA11774J

R.M. Burks and D.S. Hage, Current trends in the detection of peroxide-based explosives, Analytical and Bioanalytical Chemistry 395(2) (2009), 301-313. https://doi.org/10.1007/s00216-009-2968-5

N. Bagheri, A. Khataee, J. Hassanzadeh and B. Habibi, Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite, Journal of Hazardous Materials 360(15) (2018), 233-242. https://doi.org/10.1016/j.jhazmat.2018.08.013

X. Li, Z. Zhang and L. Tao, A novel microarray chemiluminescence method based on chromium oxide nanoparticles catalysis for indirect determination of the explosive triacetone triperoxide at the scene, Analyst 138 (2013), 1596-1600. https://doi.org/10.1039/c3an00084b

J.C. Mbah, S. Steward and N.O. Egiebor, Solid membrane electrode assembly for on board detection of peroxides based explosives, Sensors and Actuators B: Chemical 222 (2016), 693-697. https://doi.org/10.1016/j.snb.2015.08.116

R.J. Kelly, Review of safety guidelines for peroxidizable organic chemicals, American Chemical Society–Chemical Health and Safety 4(5) (1996), 33-36.

M.D. Gonsalves, L. McLennan, A.L. Slitt, J.L. Smith and J.C. Oxley, In vitro metabolism of HMTD and blood stability and toxicity of peroxide explosives (TATP and HMTD) in canines and humans, Xenobiotica 51(4) (2021), 394-403. https://doi.org/10.1080/00498254.2021.1874563

M.D. Gonsalves, K. Colizza, J.L. Smith and J.C. Oxley, In vitro and in vivo studies of triacetone triperoxide (TATP) metabolism in humans, Forensic Toxicol. 39 (2021), 59-72. https://doi.org/10.1007/s11419-020-00540-z

K. Colizza, Metabolism and gas phase reactions of peroxide explosives using atmospheric pressure ionization mass spectrometry, Open Access Dissertations, Paper 717, 2018. https://digitalcommons.uri.edu/oa_diss/717

K. Colizza, M. Gonsalves, L. McLennan, J.L. Smith and J.C. Oxley, Metabolism of triacetone triperoxide (TATP) by canine cytochrome P450 2B11, Forensic Toxicol. 37 (2019), 174-185. https://doi.org/10.1007/s11419-018-0450-9

Published
2021-08-30
How to Cite
Türker, L. (2021). Peroxide Based Organic Explosives. Earthline Journal of Chemical Sciences, 6(2), 165-208. https://doi.org/10.34198/ejcs.6221.165208
Section
Articles