Destructive Reduction of TEX by Lithium-DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TEX, explosive, lithium, reduction, density functional


Interaction of lithium atom with TEX molecule which is a high density energetic material is considered within the restrictions of density functional theory at the level of UB3LYP/6-31++G(d,p). The results indicate that the lithium atom transfers an electron to TEX causing the rupture of one of C-N bonds of the structure. Some geometrical and quantum chemical data have been collected and discussed. A plausible mechanism has been suggested for the destructive reduction of TEX molecule.


R.D. Chapman, R.A. O’Brien and P.A. Kondracki, N-Denitration of nitramines by dihydronicotinamides, Tetrahedron 52(29) (1996), 9655-9664.

T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2nd ed., New York: Wiley, 1991, p. 374.

C.L. Kitts, D.P. Cunnıngham and P.J. Unkefer, Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family enterobacteriaceae from nitramine explosive-contaminated soil, Applied and Environmental Microbiology 60(12) (1994), 4608-4611.

H. Nivinskas, J. Sarlauskas, Z. Anusevicius, H.S. Toogood, N.S. Scrutton and N. Cenas, Reduction of aliphatic nitroesters and N-nitramines by Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase: quantitative structure-activity relationships, FEBS J. 275(24) (2008), 6192-203.

V.K. Balakrishnan, F. Monteil-Rivera, A. Halasz, A. Corbeanu and J. Hawari, Decomposition of the polycyclic nitramine explosive, CL-20, by Fe0, Environmental Science and Technology 38(24) (2004), 6861-6866.

P. Armas, C.G. Francisco, R. Hernández and E. Suárez, Reduction of aliphatic nitramines. Approach to the synthesis of nitrosamines and amines, Tetrahedron Letters 27(27) (1986), 3195-3198.

H. Nivinskas, R.L. Koder, Ž. Anusevičius, J. Šarlauskas, A.F. Miller and N. Cenas, Quantitative structure–activity relationships in two electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H:Nitroreductase, Archives of Biochemistry and Biophysics 385(1) (2001), 170-178.

L.F. Cannizzo and L.R. Huntsman, Destruction of nitramines employing aqueous dispersions of metal powders. 1996, US5523517A.

J.H. Kim, C. Jo, C.H. Lee and M.W. Byun, Reduction of carcinogenic N-nitrosamines and residual nitrite in model system sausage by irradiation, Journal of Food Science 67(4) (2006), 1370-1373.

G. Lunn, E.B. Sansone and L.K. Keefer, Reduction of nitrosamines with aqueous titanium trichloride: convenient preparation of aliphatic hydrazines, J. Org. Chem. 49(19) (1984), 3470-3473.

A.K. Sikder and N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazardous Materials A 112 (2004), 1-15.

V.T. Ramarkrishnan, M. Vedachalam and J.M. Boyer, 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5,5,0,05,903,11]dodecane, Heterocycles 31 (1990), 479-480.

E.C. Koch, TEX – 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[,9.03,11]-dodecane – Review of a promising high density insensitive energetic material, Propellants Explos. Pyrotech. 40 (2015), 374-387.

Z.X. Li, Y.X. Ou and B.R. Chen, Synthesis of TEX from six kinds of different substituted piperazine, Hanneng Cailliao 9 (2001), 104-106.

T.M. Klapötke and H.G. Ann, Estimation of the crystalline density of nitramine (N-NO2 based) high energy density materials (HEDM), Propellants Explos. Pyrotech. 26 (2001), 221-224.<221::AID-PREP221>3.0.CO;2-T

S. Zeman, Relationship between detonation characteristics and 15N NMR chemical shifts of nitramines, J. Energetic Materials 17 (1999), 305-330.

J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220.

J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264.

A.R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), 1133-1138.

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100.

S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211.

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789.

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

A.N. Nesmeyanov and N.A. Nesmeyanov, Fundamentals of Organic Chemistry, V.4, 2nd ed., Moscow: Mir, 1981.

How to Cite
Türker, L. (2021). Destructive Reduction of TEX by Lithium-DFT Treatment. Earthline Journal of Chemical Sciences, 5(2), 249-260.