Tautomerism in Fuscin - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: fuscin, tautomerism, density functional, HIV, valence tautomer

Abstract

Fuscin, a natural product having various functionalities, may exhibit 1,3- and 1,5-proton tautomerism, as well as valence tautomerism via its 1,5-proton tautomer. All those possible forms are investigated within the realm of density functional theory with the constraints of B3LYP/6-311+G(d,p) level. NICS(0) calculation has been performed for the valence tautomer which possesses a benzenoid ring. The tautomers are found to be stable structures but the valence tautomer is the least likely one. Some QSAR, quantum chemical and spectral properties are obtained and discussed.

References

A.S. Gilbertsen, P.T. Lowry, V. Hawkinson and C.J. Watson, Studies of the dipyrrylmethene (“fuscin”) pigments. I. The anabolic significance of the fecal mesobilifuscin, J. Clin. Invest. 38(7) (1959), 1166-1174. https://doi.org/10.1172/JCI103892

D.H.R. Barton and J.B. Hendrickson, The constitution and synthesis of fuscin, J. Chem. Soc. (1956), 1028-1034. https://doi.org/10.1039/jr9560001028

S.E. Michael, Studies in the biochemistry of micro-organisms 79. Fuscin, a metabolic product of Oidiodendron fuscum Robak. Part 1. Preparation, properties and antibacterial activity, Biochem. J. 43 (1948), 528-533. https://doi.org/10.1042/bj0430528

M. Navarri, C. Jégou, A. Bondon, S. Pottier, S. Bach, B. Baratte, S. Ruchaud, G. Barbier, G. Burgaud, and Y. Fleury, Bioactive metabolites from the deep subseafloor Fungus Oidiodendron Griseum UBOCC-A-114129, Mar Drugs. 15(4) (2017), 111. https://doi.org/10.3390/md15040111

S.L. Morris, R.C. Walsh, and J.N. Hansen, Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action, The Journal of Biological Chemistry 259 (21) (1984), 13590-13594.

P.W. Brian, Antibiotics produced by fungi, Bot. Rev. 17 (1951), 357-430. https://doi.org/10.1007/BF02879038

N.R. Andersen, H.O.B. Lorck and P.R. Rasmussen, Fermentation, isolation and characterization of antibiotic Pr-1350, The Journal of Antibiotics 36(7) (1983), 753-760. https://doi.org/10.7164/antibiotics.36.753

W. Hammerbeck, Fuscin granules (catabolism granules) in the human myocardium, Zentralblatt fur Allgemeine Pathologie u. Pathologische Anatomie 100 (1960), 305-324.

A.S. Gilbertsen and C.J. Watson, Studies of the dipyrrylmethene (“Fuscin”) Pigments. III. The variable fate of bilirubin depending upon conjugation and other factors, J. Clin. Invest. 41(5) (1962), 1041-1049. https://doi.org/10.1172/Jcı104554

P. D. Yin, D. Das and H. Mitsuya, Overcoming HIV drug resistance through rational drug design based on molecular, biochemical, and structural profiles of HIV resistance, Cell. Mol. Life Sci. 63 (2006), 1706. https://doi.org/10.1007/s00018-006-6009-7

B.G. Roy, Potential of small-molecule fungal metabolites in antiviral chemotherapy, Antiviral Chem. Chemother. 25(2) (2017), 20-52. https://doi.org/10.1177/2040206617705500

K. Yoganathan, C. Rossant, S. Ng, Y. Huang, M.S. Butler and A.D. Buss, 10-Methoxydihydrofuscin, fuscinarin, and fuscin, novel antagonists of the human CCR5 receptor from Oidiodendron griseum, J. Nat. Prod. 66(8) (2003), 1116-1117. https://doi.org/10.1021/np030146m

J.J.P. Stewart, Optimization of parameters for semi empirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A.R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

P. Pulay, J. F. Hinton and K. Wolinski, Efficient implementation of the GIAO method for magnetic properties: theory and application. In: Tossell J.A. (eds.) Nuclear Magnetic Shieldings and Molecular Structure, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 386, pp. 243-262, Springer, Dordrecht, 1993. https://doi.org/10.1007/978-94-011-1652-7_12

W.J. Hehre, L. Radom, P.R. van Schleyer and J.A. Pople, Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

O. Reutov, Theoretical Principles of Organic Chemistry, Moscow: Mir Pub, 1970.

E.V. Anslyn and DA. Dougherty, Modern Physical Organic Chemistry, Sausalito, California: University Science Books, 2006.

S. Sarel and J. Rivlin, Ring-chain valence tautomerism in chlorinated 2H-pyran systems, Tetrahedron Lett. 6(13) (1965), 821-828. https://doi.org/10.1016/S0040-4039(00)90025-X

C.D. Gabbutt, B.M. Heron, S.B. Kolla, C. Kilner, S.J. Coles, P.N. Horton and M.B. Hursthouse, Ring contraction during the 6π-electrocyclisation of naphthopyran valence tautomers, Org. Biomol. Chem. 6(17) (2008), 3096-3104. https://doi.org/10.1039/B807744D

C.M. Moorhoff, New annulation techniques; condensations of phosphonium ylides and substituted 2H-pyran-5-carboxylates; preparation of cyclohexenonedicarboxylates and cyclohexadienedicarboxylates, J. Chin. Chem. Soc. 50 (2003), 419-424. https://doi.org/10.1002/jccs.200300064

L.R. Smith, Schemes and transformation in (CH)8 series, The “valence isomers” of cyclooctatetraene, J. Chem. Ed. 55(9) (1978), 569-576. https://doi.org/10.1021/ed055p569

D. Tejedor, S. Delgado-Hernández, R. Diana-Rivero, A. Díaz-Díaz and F. García- Tellado, Recent advances in the synthesis of 2H-pyrans, Molecules 24 (2019), 2904- 2920. https://doi.org/10.3390/molecules.24162904

J.D. Hepworth and B.M. Heron, Synthesis and photochromic properties of naphthopyrans, In Progress in Heterocyclic Chemistry; G.W. Gribble, J.A. Joule, (Eds.) vol. 17, pp. 33-62, Oxford (UK): Elsevier, 2005. https://doi.org/10.1016/S0959-6380(05)80324-1

E. Vogel, Valence isomerizations in compounds with strained rings, Angew. Chem. Int. Ed. Engl. 2 (1963), 1-11. https://doi.org/10.1002/anie.196300011

E.N. Marvell, G. Caple, T.A. Gosink and G. Zimmer, Valence isomerization of a cis- dienone to an α-pyran, J. Am. Chem. Soc. 88 (1966), 619-620. https://doi.org/10.1021/ja00955a050

E.N. Marvell and T.A. Gosink, Valence isomerization of 2,4,6-trimethyl-2H-pyran, J. Org. Chem. 37 (1972), 3036-3037. https://doi.org/10.1021/jo00984a030

T.A. Gosink, Valence isomers. Substituent effects on the equilibrium between 2H-pyrans and cis dienones, J. Org. Chem. 39 (1974), 1942-1943. https://doi.org/10.1021/jo00927a032

O.V. Drygina, A.D. Garnovskii and A.V. Kazantsev, The interconversions of pyrylium salts, pyrans, pyrones, and their open-chain forms, Russ. Chem. Rev. 54(12) (1985), 1167-1184. https://doi.org/10.1070/RC1985v054n12ABEH003163

Published
2020-09-11
How to Cite
Türker, L. (2020). Tautomerism in Fuscin - A DFT Treatment. Earthline Journal of Chemical Sciences, 4(2), 243-259. https://doi.org/10.34198/ejcs.4220.243259
Section
Articles