Compatibility of Diborane and Borane with FOX-7 - A DFT Treatment
Abstract
FOX-7 as an energetic material is getting more and more popular as the constituents of various ammunitions. On the other hand, boronic species attract attention as fuels in rocket engineering. The present study, within the constraints of density functional theory, considers some composites of them, that is FOX-7+B2H6, FOX-7+2BH3 and FOX-7+BH3. The calculations at the B3LYP/6-311++G(d,p) level indicate that all the components are structurally stable in the composites although they interact with each other electronically. Various quantum chemical and QSAR data are obtained and discussed.
References
G. Parkin, Representation of three-center–two-electron bonds in covalent molecules with bridging hydrogen atoms, J. Chem. Educ. 96(11) (2019), 2467-2475. https://doi.org/10.1021/acs.jchemed.9b00750
P.J. Durant and B. Durant, Introduction to Advanced Inorganic Chemistry, London: Longman, 1972.
H.D. Francesco, J. Dudley and A. Coca, Boron Chemistry: An Overview, ACS Symposium Series 1236 (2016), 1-25. https://doi.org/10.1021/bk-2016-1236.ch001
Q. Zhao, J. Li, E.J.M. Hamilton and X. Chen, The continuing story of the diammoniate of diborane, J. Organomet. Chem. 798(1) (2015), 24-29. https://doi.org/10.1016/j.jorganchem.2015.05.027
T.P. Fehlner, Reactions of borane (BH3). VI. Reactions with alcohols, Inorg. Chem. 12(1) (1973), 98-102. https://doi.org/10.1021/ic50119a025
T. Onak, Organoboran Chemistry, NY: Academic Press, 1975. https://doi.org/10.1016/B978-0-12-526550-8.50009-5
K. Wade, Electron Deficient Compounds, London: Nelson, 1971. https://doi.org/10.1007/978-1-4684-6054-4
P. Laszlo, A diborane story, Angewandte Chemie International Edition 39(12) (2000), 2071-2072. doi:10.1002/1521-3773(20000616)39:12<2071::aid-anie2071>3.0.co;2-c.
S.H. Bauer, Energetics of the boranes. II. Kinetic consequences of the diborane-borane equilibrium. Comments on the decomposition of OC:BH3, J. Am. Chem. Soc. 78(22) (1956), 5775-5782. https://doi.org/10.1021/ja01603a017
C. Edmiston and P. Lindner, On the dimerization of BH3 and the associated delocalization (resonance) energy, Int. J. Quantum Chem. 7(2) (1973), 309-318. https://doi.org/10.1002/qua.560070213
X. Wang, Y. Li, Y. D. Wu, M.N. Paddon-Row, N.G. Rondan and K.N. Houk, Ab initio transition structures for hydroborations of alkenes, allenes, and alkynes by borane, diborane, methylborane, methylfluoroborane, and dimethylborane, J. Org. Chem. 55(9) (1990), 2601-2609. https://doi.org/10.1021/jo00296a013
R. Liao, Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction, Struct. Chem. 23 (2012), 525-527. https://doi.org/10.1007/s11224-011-9877-x
R.J. Brotherton and H. Steinberg, Progress in Boron Chemistry, V 2 and 3, Amsterdam: Elsevier, 2016.
V.N. Huff, C.S. Calvert and V.C. Erdmann, Theoretical Performance of Diborane as a Rocket Fuel, NACA research memorandum, National Advisory Committee for Aeronautics research memorandum, National Advisory Committee for Aeronautics, NACA RM. No. E8I17a, Washington, 1949.
R.A. Carpenter, Liquid rocket propellants: Fuels and oxidizers of the future, Ind. Eng. Chem. 49 (1957), 42A-48A. https://doi.org/10.1021/i650568a731
R.A. Carpenter, Recent advances in boron technology, ARS J. 29 (1959), 8-14.
D.R. Martin, The development of borane fuels, J. Chem. Educ. 36 (1959), 208-214. https://doi.org/10.1021/ed036p208
E.A. Weilmuenster, Utilization of high-energy fuel elements, Ind. Eng. Chem. 49 (1957), 1337-1338. https://doi.org/10.1021/ie50573a020
J.P. Agrawal, High Energy Materials, Weinheim: Wiley-VCH, 2010. https://doi.org/10.1002/9783527628803
P. Politzer and J.S. Murray, Energetic Materials, Part 1, Amsterdam: Elsevier, 2003.
I.J. Lochert, FOX-7 - A New Insensitive Explosive, DSTO Aeronautical and Maritime Research Laboratory, 506 Lorimer St, Fishermans Bend, Victoria 3207 Australia, AR-012-065, November 2001.
N.V. Latypov, J. Bergman, A. Langlet, U. Wellmar and U. Bemm, Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene, Tetrahedron 54 (1998), 11525-11536. https://doi.org/10.1016/S0040-4020(98)00673-5
U. Bemm and H. Östmark, 1,1-Diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions, Acta Crystallogr. C 54 (1998), 1997-1999. https://doi.org/10.1107/S0108270198007987
N.V. Latypov, A. Langlet and U. Wellmar, New chemical compound suitable for use as an explosive, intermediate and method for preparing the compound, Patent WO99/03818, 1999.
H. Östmark, H. Bergman, U. Bemm, P. Goede, E. Holmgren, M. Johansson, A. Langlet, NV. Latypov, A. Petterson, ML. Petterson, N. Wingborg, C. Vörde, H. Stenmark, L. Karlsson and M. Hihkiö, 2,2-dinitro-ethene-1,1-diamine (FOX-7) - Properties, analysis and scale-up, 32nd International Annual Conference of ICT on Energetic Materials-Ignition, Combustion and Detonation, Karlsruhe, Germany, 2001.
H. Östmark, A. Langlet, H. Bergman, N. Wingborg, U. Wellmar and U. Bemm, FOX-7– A new explosive with low sensitivity and high performance, The 11th International Detonation Symposium, Colorado, USA, 1998.
H. Bergman, H. Ostmark, A. Pettersson, M.L. Petterson, U. Bemm and M. Hihkio, Some Initial properties and thermal stability of FOX-7, Insensitive Munitions and Energetic Materials Symposium (NDIA), Tampa, Florida, USA, 1999.
W.A. Trzciński and A. Belaada, 1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) – Properties and formulations (a Review), Cent. Eur. J. Energ. Mater. 13(2) (2016), 527-544. https://doi.org/10.22211/cejem/65000
B. Janzon, H. Bergman, C. Eldsater, C. Lamnevik and H. Ostmark, FOX-7 – A novel, high performance, low vulnerability high explosive for warhead applications, 20th Int. Symp. Ballistics, Orlando, Florida, USA: September 23-27, 2002.
Y.N. Matyushin, G.T. Afanas’ev, V.P. Lebedev, M.N. Mahov and V.I. Pepekin, TATB and FOX-7: Thermochemistry, performance, detonability, sensitivity, 34th Int. Annu. Conf. ICT, Karlsruhe, Germany: June 24-27, 2003.
AJ. Bellamy, NV. Latypov and P. Goede, Studies on the nitration of new potential precursors for FOX-7, New Trends Res. Energ. Mater. Proc. Semin. 7th, Pardubice, Czech Republic: April 20-22, 2004.
S. Cudziło, Z. Chyłek and R. Diduszko, Crystallization and characterization of 1,1- diamino-2,2-dinitroethene (DADNE), 36th Int. Annu. Conf. ICT, Karlsruhe, Germany: June 28-July 1, 2005.
W.A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Investigation of sensitivity and detonation properties of FOX-7, 37th Int. Annu. Conf. ICT, Karlsruhe, Germany: June 27-30, 2006.
M. Anniyappan, M.B. Talawar, G.M. Gore, S. Venugopalan and B.R. Gandhe, Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts, J. Hazard. Mater. B 137 (2006), 812-819. https://doi.org/10.1016/j.jhazmat.2006.03.034
W.A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Detonation properties of 1,1- diamino-2,2-dinitroethene (DADNE), J. Hazard. Mater. 157 (2008), 605-612. https://doi.org/10.1016/j.jhazmat.2008.01.026
V.S. Mishra, S.R. Vadali, R.K. Garg, V.S. Joshi, R.D. Wasnik and S. Asthana, Studies on FOX-7 based melt cast high explosive formulations, Cent. Eur. J. Energ. Mater. 10(4) (2013), 569-580.
N.V. Latypov, M. Johansson, E. Holmgren, E.V. Sizova, V.V. Sizov and A.J. Bellamy, On the synthesis of 1,1-diamino-2,2-dinitroethene (FOX-7) by nitration of 4,6-dihydroxy-2-methylpyrimidine, Org. Process Res. Dev. 11(1) (2007), 56-59. https://doi.org/10.1021/op068010t.
Y. Zhang, Q. Sun, K. Xu, J. Song and F. Zhao, Review on the reactivity of 1,1-diamino- 2,2-dinitroethylene (FOX-7), Propellants Explos. Pyrotech. 41 (2016), 35-52. https://doi.org/10.1002/prep.201500065
K. Baum, N.V. Nguyen, R. Gilardi, J.L. Flippen-Anderson and C. George, Nitration of 1,1-diamino-2,2-dinitroethylenes, J. Org. Chem. 57 (1992), 3026-3030. https://doi.org/10.1021/jo00037a015
T.M. Klapötke, Chemistry of High-Energy Materials, Berlin: De Gruyter, 2011. https://doi.org/10.1515/9783110227840
H. Lips and K. Menke, FOX-7/GAP rocket propellants for a shoulder launched projectile, 27th International Symposium on Ballistics, Freiburg, Germany: April 22-26, 2013.
J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208
J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem., 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209
A.R. Leach, Molecular Modeling, Essex: Longman, 1997.
P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.
C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159
C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A. David Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arabian J. Chem. 12(5) (2019), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, J. Energ. Mater. 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326
L.H. Long, The mechanisms of thermal decomposition of diborane and of interconversion of the boranes: a reinterpretation of the evidence, J. Inorg. Nucl. Chem. 32(4) (1970), 1097-1115. https://doi.org/10.1016/0022-1902(70)80104-X
Y.B. Fan, Z.B. Ding, Q.R. Wang and F.G. Tao, A DFT study on dissociation of diborane (B2H6) in dimethyl sulfide media, Chem. Phys. Lett. 328(1-2) (2000), 39-44. https://doi.org/10.1016/S0009-2614(00)00886-1
G.G. Hawley, The Condensed Chemical Dictionary, 9th ed., NY: Van Nostrand Reinhold, 1977.
This work is licensed under a Creative Commons Attribution 4.0 International License.