3(4)-Amino-4(3)-nitro-1,2,5-oxadiazole-2-oxides and their Ring-opened Isomers-A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: furoxan, furazan oxide, 1,2,5-oxadiazole-2-oxide, pull-push, density functional, explosive

Abstract

Amino and nitro substituted 1,2,5-oxadiazole-2-oxide isomers and their ring-opened nitroso forms have been subjected to density functional treatment at the level of B3LYP/6-311++G(d,p). The transition states for the ring opening processes are obtained and the corresponding activation energies have been calculated. Also, 1,3- and 1,5-proton tautomerism yielding imine, oxime and aci forms are investigated. For all the structures, the stabilities, the HOMO, LUMO energies and the interfrontier molecular orbital energy gaps are obtained and the effects of substituents (NH2 and NO2) are discussed.

References

N. Wang, B. Chen and Y. Ou, Review on benzofuroxan system compounds, Propellants, Explosives, Pyrotechnics 19 (1994), 145-148. https://doi.org/10.1002/prep.19940190306 (A. Kekule, Justus Liebigs Ann. Chem. 101, 200 (1857); 105, 279 (1858)).

N. N. Makhova and L. L. Fershtat, Recent advances in the synthesis and functionalization of 1,2,5-oxadiazole 2-oxides, Tetrahedron Letters 59(24) (2018), 2317-2326. https://doi.org/10.1016/j.tetlet.2018.04.070

L. Türker, Furoxan derivatives of pyrene - a DFT study, Polycyclic Aromatic Compounds 38(3) (2018), 257-271. https://doi.org/10.1080/10406638.2016.1200637

L. Türker, Isomerization of 4,6-dinitrobenzofuroxan - a DFT study, Journal of Energetic Materials 29(2) (2011), 127-149. https://doi.org/10.1080/07370652.2010.510496

L. Türker, C. C. Bayar and A. T. Balaban, A DFT study on push-pull (amino-nitro) fulminenes and hexahelicenes, Polycyclic Aromatic Compounds 30(2) (2010), 91-111. https://doi.org/10.1080/10406631003756005

L. Türker, A DFT study on benzotrifuroxan and its isomers, Polycyclic Aromatic Compounds 30(1) (2010), 44-60. https://doi.org/10.1080/10406631003608479

Z. Xu, H. Yang and G. Cheng, Novel energetic compounds based on 3-methyl-1,2,5-oxadiazole 2-oxide, Journal of Energetic Materials 36(1) (2018), 29-37. https://doi.org/10.1080/07370652.2017.1302519

A. R. Katritzky and M. F. Gordeev, Heterocyclic rearrangements of benzofuroxanes and related compounds. A review about the chemistry of benzofuroxans, Heterocycles 35 (1993), 483-518. https://doi.org/10.3987/REV-92-SR2

M. S. Morales-Ríos, M. García-Velgara, H. Cervantes-Cuevas, C. Alvarez-Cisneros and P. Joseph-Nathan, Push-pull and pull-push effects in isatylidenes, Magnetic Resonance in Chemistry 38(3) (2000), 172-176. https://doi.org/10.1002/(SICI)1097-458X(200003)38:3%3C172::AID-MRC618%3E3.0.CO;2-D

A. Sutter, P. Retailleau, W. C. Huang, H. W. Lin and R. Ziessel, Photovoltaic performance of novel push-pull-push thienyl-Bodipy dyes in solution-processed BHJ-solar cells, New Journal of Chemistry 38(4) (2014), 1701-1710. https://doi.org/10.1039/C3NJ01436C

L. Türker, Interaction of TATB with Cu and Cu+1. A DFT study, Defence Technology 15(1) (2019), 27-37. https://doi.org/10.1016/j.dt.2018.05.001

R. Kundu and C. Kulshreshtha, Design, synthesis and electronic properties of push-pull type dye, RSC Advances 5(94) (2015), 77460-77468. https://doi.org/10.1039/C5RA13416A

B. Sekaran, Y. Jang, R. Misra and F. D’Souza, Push-pull porphyrins via β-pyrrole functionalization: evidence of excited state events leading to high-potential charge- separated states, Chemistry - A European Journal 25(56) (2019), 12991-13001. https://doi.org/10.1002/chem.201902286

J. T. Ye, H. Q. Wang, Y. Zhang and Y. Q. Qiu, Regulation of the molecular architectures on second-order nonlinear optical response and thermally activated delayed fluorescence property: homoconjugation and twisted donor-acceptor, Journal of Physical Chemistry C (2020), to appear.

T. Duan, R. Z. Liang, Y. F. Pai, K. Wang, C. Zhong, S. Lu and D. Yu, Facile synthesis of bis-dicyanovinylidene-end-capped push-pull molecules as panchromatic absorbers, Dyes and Pigments 161 (2019), 227-232. https://doi.org/10.1016/j.dyepig.2018.09.060

C. Kumar, A. A. Raheem, K. Pandian, R. Shanmugam and C. Praveen, Fine-tuning the optoelectronic chattels of fluoreno-thiophene centred molecular semiconductors through symmetric and asymmetric push-pull switch, New Journal of Chemistry 43(18) (2019), 7015-7027. https://doi.org/10.1039/C9NJ00775J

E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, K. O. Khokhlov, E. M. Cheprakova, G. L. Rusinov, O. N. Chupakhin and V. N. Charushin, New V-shaped push-pull systems based on 4,5-di(hetero)aryl substituted pyrimidines: their synthesis and application to the detection of nitroaromatic explosives, Arkivoc 3 (2016), 360-373. https://doi.org/10.3998/ark.5550190.p009.470

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation Effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, New York: McGraw-Hill, 1969.

M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, NY: Plenum-Rosetta, 1975. https://doi.org/10.1007/978-1-4613-4404-9

L. Türker, Recent developments in the theory of explosive materials, in: Explosive Materials, J.T. Jansen, ed., New York: NOVA, 2011.

N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers and M. S. Mannan, Predicting the impact sensitivity of polynitro compounds using quantum chemical descriptors, J. Energetic Materials 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326.

Published
2020-04-14
How to Cite
Türker, L. (2020). 3(4)-Amino-4(3)-nitro-1,2,5-oxadiazole-2-oxides and their Ring-opened Isomers-A DFT Treatment . Earthline Journal of Chemical Sciences, 4(1), 35-51. https://doi.org/10.34198/ejcs.4120.3551
Section
Articles