A heterofullerene cap having trivalent boron – A DFT treatment
Abstract
Presently, a potential cap for fullerenes has been designed which possesses trivalent boron at the apex that it has been linked to nitrogens of pyrrole type rings. The structure has been investigated thoroughly within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). The collected data have revealed that the optimized structure has exothermic heat of formation and favorable Gibbs free energy of formation values. It is thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra. Also “nucleus-independent chemical shift” (NICS) data have been presented for typical rings. The collected data indicate that the peripheral ring is an annulene whereas the other rings are either non-aromatic or antiaromatic.
Downloads
References
Carey, F. A., & Sundberg, R. J. (2000). Advanced organic chemistry (Vol. 1, pp. 514–524). Kluwer Academic/Plenum Publishers.
Casademont-Reig, I., Ramos-Cordoba, E., Torrent-Sucarrat, M., & Matito, E. (2020). How do the Hückel and Baird rules fade away in annulenes? Molecules, 25, 711. https://doi.org/10.3390/molecules25030711
Reginald, H. M., Joseph, S. H. Y., & Thomas, W. D. (1982). Benzannelated annulenes: Toward the understanding of benzannelated annulenes—Synthesis and properties of an [e]-ring monobenzannelated dihydropyrene. Journal of the American Chemical Society, 104(9), 2551–2559. https://doi.org/10.1021/ja00373a037
Türker, L. (2003). An ab initio treatment on some isomeric structures of a small pseudocyclacene. Journal of Molecular Structure: THEOCHEM, 637(1–3), 109–113. https://doi.org/10.1016/S0166-1280(03)00473-1
Türker, L. (2002). Borazine embedded corannulenes—AM1 treatment. Journal of Molecular Structure: THEOCHEM, 584(1–3), 135–141. https://doi.org/10.1016/S0166-1280(02)00012-X
Oth, J. F. M., Rotelle, H., & Schroder, G. (1970). [12]-Annulene. Tetrahedron Letters, 11(1), 61–66. https://doi.org/10.1016/S0040-4039(01)87565-1
Dewar, M. J. S. (1969). The molecular orbital theory of organic chemistry. McGraw-Hill.
Dewar, M. J. S., & Dougherty, R. C. (1975). The PMO theory of organic chemistry. Plenum Press.
Beavers, C. M., Zuo, T., Duchamp, J. C., Harich, K., Dorn, H. C., Olmstead, M. M., & Balch, A. L. (2006). Tb₃N@C₈₄: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. Journal of the American Chemical Society, 128(35), 11352–11353. https://doi.org/10.1021/ja063636k
Xie, S. Y., Gao, F., Lu, X., Huang, R. B., Wang, C. R., Zhang, X., Liu, M. L., Deng, S. L., & Zheng, L. S. (2004). Capturing the labile fullerene C₅₀ as C₅₀Cl₁₀. Science, 304(5671), 699. https://doi.org/10.1126/science.1095567
Weng, Q. H., He, Q., Liu, T., Huang, H. Y., Chen, J. H., Gao, Z. Y., Xie, S. Y., Lu, X., Huang, R. B., & Zheng, L. S. (2010). Simple combustion production and characterization of octahydro[60]fullerene with a non-IPR C₆₀ cage. Journal of the American Chemical Society, 132(43), 15093–15095. https://doi.org/10.1021/ja108316e
Yu, X., Zhang, J., Choi, W., Choi, J.-Y., Kim, J. M., Gan, L., & Liu, Z. (2010). Cap formation engineering: From opened C₆₀ to single-walled carbon nanotubes. Nano Letters, 10(9), 3343–3349. https://doi.org/10.1021/nl1010178
Brinkmann, G., Fowler, P. W., Manolopoulos, D. E., & Palser, A. H. R. (1999). A census of nanotube caps. Chemical Physics Letters, 315(5–6), 335–347. https://doi.org/10.1016/S0009-2614(99)01111-2
Saito, T., & Saito, H. (2017). Two-way correspondence between carbon nanotubes and caps: Development of a numerical algorithm and a tool for organic cap synthesis. Carbon, 116, 678–685. https://doi.org/10.1016/j.carbon.2017.02.038
Ono, S., Takahashi, K., Kubo, R., & Osawa, K. (2016). Relationship between cap structure and energy gap in capped carbon nanotubes. The Journal of Chemical Physics, 145(2), 024701. https://doi.org/10.1063/1.4955495
Melle-Franco, M., Brinkmann, G., & Zerbetto, F. (2015). Modeling nanotube caps: The relationship between fullerenes and caps. The Journal of Physical Chemistry A, 119(51), 12839–12844. https://doi.org/10.1021/acs.jpca.5b09244
Zhu, Z. P., & Gu, Y. D. (1996). Structure of carbon caps and formation of fullerenes. Carbon, 34(2), 173–178. https://doi.org/10.1016/0008-6223(96)00174-1
Sinnott, S. B., & Andrews, R. (2001). Carbon nanotubes: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 26(3), 145–249. https://doi.org/10.1080/20014091104189
Harris, P. J. F. (2009). Carbon nanotube science: Synthesis, properties and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511609701
Artyukhov, V., Penev, E., & Yakobson, B. (2014). Why nanotubes grow chiral. Nature Communications, 5, 4892. https://doi.org/10.1038/ncomms5892
Pérez-Guardiola, A., Ortiz-Cano, R., Sandoval-Salinas, M. E., Fernández-Rossier, J., Casanova, D., Pérez-Jiménez, A. J., & Sancho-García, J. C. (2019). From cyclic nanorings to single-walled carbon nanotubes: Disclosing the evolution of their electronic structure with the help of theoretical methods. Physical Chemistry Chemical Physics, 21(5), 2547–2557. https://doi.org/10.1039/C8CP06615A
Dias, J. R. (2016). Facile calculation of Hückel molecular orbital eigenvalues of short (n,0) nanotubes. Chemical Physics Letters, 647, 79–84. https://doi.org/10.1016/j.cplett.2016.01.055
Schwerdtfeger, P., Wirz, L. N., & Avery, J. (2015). The topology of fullerenes. WIREs Computational Molecular Science, 5, 96–145. https://doi.org/10.1002/wcms.1207
Gonzalez, S. N. (2008). Boron fullerenes: A first-principles study. Nanoscale Research Letters, 3(2), 49–54. https://doi.org/10.1007/s11671-007-9113-1
Dong, H., Lin, B., Gilmore, K., Hou, T., Lee, S.-T., & Li, Y. (2015). B₄₀ fullerene: An efficient material for CO₂ capture, storage and separation. Current Applied Physics, 15(9), 1084–1089. https://doi.org/10.1016/j.cap.2015.06.008
Türker, L., & Gümüş, S. (2004). An AM1 study on C₆₀@C₁₈₀ system. Journal of Molecular Structure: THEOCHEM, 674(1–3), 15–18. https://doi.org/10.1016/j.theochem.2003.12.023
Türker, L. (2003). A theoretical study on the simplest fullerene C₂₀: An AM1 treatment. Journal of Molecular Structure: THEOCHEM, 625(1–3), 169–171. https://doi.org/10.1016/S0166-1280(03)00015-0
Stewart, J. J. P. (1989). Optimization of parameters for semi-empirical methods I. Journal of Computational Chemistry, 10, 209–220. https://doi.org/10.1002/jcc.540100208
Stewart, J. J. P. (1989). Optimization of parameters for semi-empirical methods II. Journal of Computational Chemistry, 10, 221–264. https://doi.org/10.1002/jcc.540100209
Leach, A. R. (1997). Molecular modeling. Longman.
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. Oxford University Press.
Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
Wavefunction, Inc. (2006). SPARTAN 06. Irvine, CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,Cheeseman, J.R.,Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V.,Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K.,Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox,J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P.,Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., &Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology, 178(1), 63–89. https://doi.org/10.1016/0022-2836(84)90231-6
Schleyer, P. R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N. J. R. E. (1996). Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. https://doi.org/10.1021/ja960582d
Jiao, H., & Schleyer, P. R. (1998). Aromaticity of pericyclic reaction transition structures: Magnetic evidence. Journal of Physical Organic Chemistry, 11, 655–662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AIDPOC66>3.0.CO;2U
Schleyer, P. R., Kiran, B., Simion, D. V., & Sorensen, T. S. (2000). Does Cr(CO)₃ complexation reduce the aromaticity of benzene? Journal of the American Chemical Society, 122, 510–513. https://doi.org/10.1021/ja9921423
Quinonero, D., Garau, C., Frontera, A., Ballester, P., Costa, A., & Deyà, P. M. (2002). Quantification of aromaticity in oxocarbons: The problem of the fictitious “nonaromatic” reference system. Chemistry – A European Journal, 8, 433–438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T
Patchkovskii, S., & Thiel, W. (2002). Nucleus-independent chemical shifts from semiempirical calculations. Journal of Molecular Modeling, 6, 67–75. https://doi.org/10.1007/PL00010736
Minkin, V. I., Glukhovtsev, M. N., & Simkin, B. Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. Wiley.
Schleyer, P. R., & Jiao, H. (1996). What is aromaticity? Pure and Applied Chemistry, 68, 209–218. https://doi.org/10.1351/pac199668020209
Glukhovtsev, M. N. (1997). Aromaticity today: Energetic and structural criteria. Journal of Chemical Education, 74, 132–136. https://doi.org/10.1021/ed074p132
Krygowski, T. M., Cyranski, M. K., Czarnocki, Z., Hafelinger, G., & Katritzky, A. R. (2000). Aromaticity: A theoretical concept of immense practical importance. Tetrahedron, 56, 1783–1796. https://doi.org/10.1016/S0040-4020(99)00979-5
Schleyer, P. R. (2001). Introduction: Aromaticity. Chemical Reviews, 101, 1115–1118. https://doi.org/10.1021/cr0103221
Cyranski, M. K., Krygowski, T. M., Katritzky, A. R., & Schleyer, P. R. (2002). To what extent can aromaticity be defined uniquely? Journal of Organic Chemistry, 67, 1333–1338. https://doi.org/10.1021/jo016255s

This work is licensed under a Creative Commons Attribution 4.0 International License.
