Some isomers of BN-embedded phenanthrene – A DFT treatment
Abstract
Boron–nitrogen heteroarenes possess great promise for practical application in many areas of chemistry, biochemistry and pharmacology, beside materials science, and transition-metal-based catalysis. Presently, various BN-bond having phenanthrenes have been investigated thoroughly within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). The collected data have revealed that the optimized structures of them have exothermic heats of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra. Also “nucleus-independent chemical shift” (NICS) data have been presented for each ring.
Downloads
References
Gsänger, M., Bialas, D., Huang, L., Stolte, M., & Würthner, F. (2016). Organic semiconductors based on dyes and color pigments. Adv. Mater., 28, 3615–3645. https://doi.org/10.1002/adma.201505440
Li, M., An, C., Pisula, W., & Müllen, K. (2018). Cyclopentadithiophene-benzothiadiazole donor-acceptor polymers as prototypical semiconductors for high-performance field-effect transistors. Acc. Chem. Res., 51, 1196–1205. https://doi.org/10.1021/acs.accounts.8b00025
Grimsdale, A.C., Chan, K.L., Martin, R.Ei, Jokisz, P.G., Holmes, A.B. (2009). Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev., 109(3), 897–1091. https://doi.org/10.1021/cr000013v
Lu, L., Zheng, T., Wu, Q., Schneider, A.M., Zhao, D., & Yu, L. (2015). Recent advances in bulk heterojunction polymer solar cells. Chem. Rev., 115, 12666–12731. https://doi.org/10.1021/acs.chemrev.5b00098
Zhan, C., & Yao, J. (2016). More than conformational “Twisting” or “Coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem. Mater., 28, 1948–1964. https://doi.org/10.1021/acs.chemmater.5b04339
Shi, K., Zhang, F., Di, C.A., Yan, T.W., Zou, Y., Zhou, X., Zhu, D., Wang, J.Y., & Pei, J. (2015). Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc., 137(22), 6979–82. https://doi.org/10.1021/jacs.5b00945
Huang, D., Wang, C., Zou, Y., Shen, X., Zang, Y., Shen, H., Gao, X., Yi, Y., Xu, W., Di, C.A., & Zhu D. (2016). Bismuth interfacial doping of organic small molecules for high performance n-type thermoelectric materials. Angew. Chem. Int. Ed. Engl., 55(36), 10672–5. https://doi.org/10.1002/anie.201604478
Lim, E., Peterson, K.A., Su, G.M., & Chabinyc, M.L. (2018). Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem. Mater., 30, 998–1010. https://doi.org/10.1021/acs.chemmater.7b04849
Wang, X., Lv, L., Li, L., Chen, Y., Zhang, K., Chen, H., Dong, H., Huang, J., Shen, G., Yang, Z., Huang, H. (2016). High-performance all-polymer photo response devices based on acceptor-acceptor conjugated polymers. Adv. Funct. Mater., 26, 6306–6315. https://doi.org/10.1002/adfm.201601745
Benavides, C.M., Murto, P., Chochos, C.L., Gregoriou, V.G., Avgeropoulos, A., Xu, X., Bini, K., Sharma, A., Andersson, M.R., Schmidt, O., Brabec, C.J., Wang, E., & Tedde, S.F. (2018). High-performance organic photo detectors from a high-band gap indacenodithiophene-based π-conjugated donor-acceptor polymer. ACS Appl. Mater. Interfaces, 10, 12937–12946. https://doi.org/10.1021/acsami.8b03824
Murto, P., Genene, Z., Benavides, C.M., Xu, X., Sharma, A., Pan, X., Schmidt, O., Brabec, C.J., Andersson, M.R., Tedde, S.F., Mammo, W., & Wang, E. (2018). High performance all-polymer photo detector comprising a donor-acceptor-acceptor structured indacenodithiophene-bithieno[3,4-c]pyrroletetrone copolymer. ACS Macro Lett., 7, 395–400. https://doi.org/10.1021/acsmacrolett.8b00009
Zachary, X.G., & Shih-Yuan, L. (2018). The state of the art in azaborine chemistry: New synthetic methods and applications. Journal of the American Chemical Society, 140 (4), 1184–1194. https://doi.org/10.1021/jacs.7b09446
Huang, J., & Li, Y. (2018). BN embedded polycyclic π-conjugated systems: Synthesis, optoelectronic properties, and photovoltaic applications. Frontiers in Chemistry, 6, 341. https://doi.org/10.3389/fchem.2018.00341
Edel, K., Yang, X., Ishibashi, J.S.A., Lamm, A.N., Maichle-Mössmer, C., Giustra, Z.X., Liu, S.Y., & Bettinger, H.F. (2018). The Dewar isomer of 1,2-dihydro-1,2- azaborinines: isolation, fragmentation, and energy storage. Angew. Chem. Int. Ed. Engl., 57(19), 5296–5300. https://doi.org/10.1002/anie.201712683
Burford, R.J., Li, B., Vasiliu, M., Dixon, D.A., & Liu, S.Y. (2015). Diels-Alder reactions of 1,2-azaborines. Angew. Chem. Int. Ed. Engl., 54(27), 7823–7. https://doi.org/10.1002/anie.201503483
Chen, C., Du, C-Z., & Wang, X-Y. (2022). The Rise of 1,4-BN-Heteroarenes: Synthesis, Properties, and Applications. Adv. Sci., 9, 2200707 (1–22). https://doi.org/10.1002/advs.202200707
Wang, X.Y., Wang, J.Y., & Pei, J. (2015). BN heterosuperbenzenes: synthesis and properties. Chemistry–A European Journal, 21(9), 3528–3539.
Helten, H. (2016). B=N Units as part of extended π-conjugated oligomers and polymers. Chemistry–A European Journal, 22(37), 12972–12982.
Bélanger-Chabot, G., Braunschweig, H., & Roy, D.K. (2017). Recent developments in azaborinine chemistry. European Journal of Inorganic Chemistry, 2017(38-39), 4353–4368.
McConnell, C.R., & Liu, S.Y. (2019). Late-stage functionalization of BN-heterocycles. Chemical Society Reviews, 48(13), 3436–3453.
Abengózar, A., García-García, P., Fernández-Rodríguez, M.A, Sucunza, D., & Vaquero, J.J. (2021). In Advances in Heterocyclic Chemistry, Vol. 135 (Eds: E. F. V. Scriven, C.A. Ramsden), San Diego; Academic Press, p. 197.
Bhattacharjee, A., Davies, G.H., Saeednia, B., Wisniewski, S.R., & Molander, G.A. (2021). Selectivity in the elaboration of bicyclic borazarenes. Advanced Synthesis & Catalysis, 363(9), 2256–2273.
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209–220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput.Chem., 10, 221–264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133–1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200–1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,Cheeseman, J.R.,Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V.,Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K.,Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox,J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P.,Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., &Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Dewar, M.J.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill,
Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum-Rosetta. https://doi.org/10.1007/978-1-4613-4404-9
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleusindependent chemical shifts: A simple and efficient aromaticity probe, J. Am. Chem. Soc. 118, 6317–6318. https://doi.org/10.1021/ja960582d
Jiao, H., & Schleyer, P.R. (1998). Aromaticity of pericyclic reaction transition structures: magnetic evidence, J. Phys. Org. Chem. 11, 655–662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AIDPOC66>3.0.CO;2U
Schleyer, P.R., Kiran, B., Simion, D.V., and Sorensen, T.S. (2000). Does Cr(CO)3 complexation reduce the aromaticity of benzene?, J. Am. Chem. Soc. 122, 510–513. https://doi.org/10.1021/ja9921423
Quinonero, D., Garau, C., Frontera, A., Ballaster, P., Costa, A., & and Deya, P.M. (2002). Quantification of aromaticity in oxocarbons: The problem of the fictitious “nonaromatic” reference system, Chem. Eur. J. 8, 433–438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T
Patchkovskii, S., & Thiel, W. (2002). Nucleus-independent chemical shifts from semiempirical calculations, J. Mol. Model. 6, 67–75. https://doi.org/10.1007/PL00010736
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?, Pure Appl. Chem. 68, 209–218. https://doi.org/10.1351/pac199668020209
Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria, J. Chem Educ. 74, 132–136. https://doi.org/10.1021/ed074p132
Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance, Tetrahedron 56, 1783–1796. https://doi.org/10.1016/S0040-4020(99)00979-5
Schleyer, P.R. (2001). Introduction: Aromaticity, Chem. Rev. 101, 1115–1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?, J. Org. Chem. 67, 1333–1338. https://doi.org/10.1021/jo016255s
Onak, T. (1975). Organoborane chemistry. New York: Academic Press.
Clar, E. (1972). The aromatic sextet. London: Wiley.
Clar, E. (1964). Polycyclic hydrocarbons, V1. London: Academic Press.

This work is licensed under a Creative Commons Attribution 4.0 International License.
