Effect of magnesium on isomers of 1,2-diamino-1,2-dinitroethylenes – A DFT treatment
Abstract
The cis and trans isomers of 1,2-diamino-1,2-dinitroethylene which might be extracted from FOX-7 structure are considered and have been investigated thoroughly within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). Then their interactions with magnesium atom at the same level of theory have been considered. The collected data revealed that all the optimized structures considered have exothermic heats of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. In all the cases the magnesium atom acquires positive charge indicating that some electron population has been conveyed to the organic partner. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra.
References
Zhang, Y., Sun, Q., Xu, K., Song, J., & Zhao, F. (2016). Review on the reactivity of 1,1-diamino-2,2-dinitroethylene (FOX-7). Propellants Explos. Pyrotech., 41, 35–52. https://doi.org/10.1002/prep.201500065
Baum, K., Nguyen, N.V., Gilardi, R., Flippen-Anderson, J.L., & George, C. (1992). Nitration of 1,1-diamino-2,2-dinitroethylenes. Journal of Organic Chemistry, 57, 3026- 3030. https://doi.org/10.1021/jo00037a015
Kleinpeter, E. (2006). Push-pull alkenes: Structure and π-electron distribution. Journal of the Serbian Chemical Society, 71(1), 1-17. https://doi.org/10.2298/JSC0601001K
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Dykstra, C.E., Frenking, G., Kim, K., & Scuseria, G. (2015). Theory and applications of computational chemistry: The first forty years. New York: Elsevier.
Yanai, H., Suzuki, T., Kleemiss, F., Fukaya, H., Malaspina, L.A., Grabowsky, S., & Matsumoto, T. (2019). Chemical bonding in polarized push-pull ethylenes. Angewandte Chemie International Edition, 58(26), 8839-8844. https://doi.org/10.1002/anie.201904176
Shainyan, B.A., Fettke, A., & Kleinpeter, E. (2008). Push-pull vs captodative aromaticity. J. Phys. Chem. A, 112(43), 10895-10903. https://doi.org/10.1021/jp804999m
Pappalardo, R.R., Marcos, E.S., Ruiz-Lóapez, M.F., & Rinaldi D. (1991). Theoretical study of simple push-pull ethylenes in solution. Journal of Physical Organic Chemistry, 4(3), 41-148. https://doi.org/10.1002/poc.610040304
Politzer, P., Concha, M.C., Grice, M.E., Murray J.S., Lane, P., & Habibollazadeh, D. (1998). Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. Journal of Molecular Structure (Theochem), 452, 75- 83. https://doi.org/10.1016/S0166-1280(98)00136-5
Kleinpeter, E., Klod, S., & Rudorf, Wolf-Dieter. (2004). Electronic state of push-pull alkenes: An experimental dynamic NMR and theoretical ab ınitio MO study. J. Org. Chem., 69(13), 4317-4329. https://doi.org/10.1021/jo0496345
Ababneh-Khasawneh, M., Fortier-McGill, B.E., Occhionorelli, M.E., & Bain, A.D. (2011). Solvent effects on chemical exchange in a push-pull ethylene as studied by NMR and electronic structure calculations. J. Phys. Chem. A, 115(26), 7531-7537. https://doi.org/10.1021/jp201885q
Türker, L., Bayar, Ç.Ç., & Balaban, A.T. (2010). A DFT study on push-pull (aminonitro) fulminenes and hexahelicenes. Polycyclic Aromatic Compounds, 30(2), 91-111. https://doi.org/10.1080/10406631003756005
Türker, L., & Bayar, Ç.Ç. (2010). A DFT study on disubstituted R-hexahelicenes having donor/acceptor groups. Procedia Computer Science, 1(1), 1155-1164. https://doi.org/10.1016/j.procs.2010.04.129
Bowden, P.R., Tappan, B.C., Schmitt, M.M., Lebrun, R.W., Shorty, M., Leonard, P.W., Lichthardt, J.P., Francois, E.G., & Hill, L.G. (2018). Synthesis, formulation and performance evaluation of reduced sensitivity explosives, AIP Conference Proceedings 1979, 100005. https://doi.org/10.1063/1.5044877
Türker, L. (2016). Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12(6), 423 445. https://doi.org/10.1016/j.dt.2016.09.002
Lempert, D.B., Dorofeenko, E.M., & Shu, Y. (2016). Energy potential of solid composite propellants based on 1,1-diamino-2,2-dinitroethylene. Russian Journal of Physical Chemistry B, 10(3) 483-489. https://doi.org/10.1134/S1990793116030258
Ye, C.C., Zhao, F.Q., Xu, S.Y., & Ju, X.H. (2013). Density functional theory studies on adsorption and decomposition mechanism of FOX-7 on Al13 clusters. Canadian Journal of Chemistry, 91(12), 1207-1212. https://doi.org/10.1139/cjc-2013-0334
Bian, L., Shu, Y., Xu, J., & Wang, L. (2013). Computational investigation on the new high energy density material of aluminum enriched 1,1-diamino-2,2-dinitroethylene. Journal of Molecular Modeling, 19(1), 131-138. https://doi.org/10.1007/s00894-012-1533-x
Ye, C., Ju, X., Zhao, F., & Xu, S. (2012). Adsorption and decomposition mechanism of 1,1-diamino-2,2-dinitroethylene on Al(111) surface by periodic DFT calculations. Chinese Journal of Chemistry, 30(10), 2539-2548. https://doi.org/10.1002/cjoc.201200470
Sorescu, D.C., Boatz, J.A., & Thompson, D.L. (2003). First-principles calculations of the adsorption of nitromethane and 1,1-diamino-2,2-dinitroethylene (FOX-7) molecules on the Al(111) surface. Journal of Physical Chemistry B, 107(34), 8953-8964. https://doi.org/10.1021/jp046193k
Türker, L. (2021). Interaction of 1,1-diamino-2,2-dinitroethylene with aluminum and gallium admixture - DFT Treatment. Earthline Journal of Chemical Sciences, 5(1), 87- 103. https://doi.org/10.34198/ejcs.5121.87103
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Hehre, W.J., Shusterman, A,J., Huang, W.W. (1998). A loboratory book of computational organic chemistry. Irwin, CA. USA: Wavefunction.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.