Effect of zirconium on Fox-7 – A DFT treatment
Abstract
Interaction of 1,1-diamino-2,2-dinitroethylene (Fox-7) with zirconium atom has been investigated within the constraints of density functional theory mainly at the levels of B3LYP/ 6-31+G(d) and WB97X-D/ 6-31+G(d). Also, the interactions of zirconium with cis- and trans-amino nitro ethylenes (ANE, as substructures excerpted from Fox-7) are considered at the same levels of the theory. The results revealed that at the B3LYP/ 6-31+G(d) level cis and trans-amino nitro ethylenes decompose via different modes whereas Fox-7 structurally remains intact. Whereas WB97X-D/ 6-31+G(d) level of calculations yield decomposition via rupture of N-H bond in all the cases considered. The collected data revealed that all the optimized structures considered have exothermic heat of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. In all the cases the zirconium atom acquires positive partial charge and certain type of bonding happens with it and the organic partner. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra.
References
Agrawal, J.P. (2010). High energy materials (1st ed.). Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527628803
Politzer, P., & Murray, J.S. (2003). Energetic materials, Part 1 (1st ed.). Amsterdam: Elsevier.
Lochert, I.J. (2001). FOX-7 - A new insensitive explosive FOX-7. DSTO Aeronautical and Maritime Research Laboratory Australia, AR-012-065, November 2001.
Latypov, N.V., Bergman, J., Langlet, A., Wellmar, U., & Bemm, U. (1998). Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron, 54, 11525-11536. https://doi.org/10.1016/S0040-4020(98)00673-5
Bemm, U., & Östmark, H. (1998). 1,1-Diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions. Acta Crystallogr., C 54, 1997-1999. https://doi.org/10.1107/S0108270198007987
Latypov, N.V., Langlet, A., & Wellmar, U. (1999). New chemical compound suitable for use as an explosive, intermediate and method for preparing the compound. Patent No. WO99/03818.
Östmark, H., Bergman, H., Bemm, U., Goede, P., Holmgren, E., Johansson, M., Langlet, A., Latypov, N.V., Petterson, A., Petterson, M.L., Wingborg, N., Vörde, C., Stenmark, H., Karlsson, L., & Hihkiö, M. (2001). 2,2-Dinitro-ethene-1,1-diamine (FOX-7) - Properties, analysis and scale-up. Paper presented at the 32nd International Annual Conference of ICT on Energetic Materials-Ignition, Combustion and Detonation, Karlsruhe, Germany.
Östmark, H., Langlet, A., Bergman, H., Wingborg, N., Wellmar, U., & Bemm, U. (1998). FOX-7 – A new explosive with low sensitivity and high performance. Paper presented at The 11th International Detonation Symposium, Colorado, USA.
Bergman, H., Ostmark, H., Pettersson, A., Petterson, M.L., Bemm, U., & Hihkio, M. (1999). Some initial properties and thermal stability of FOX-7. Paper presented at the Insensitive Munitions and Energetic Materials Symposium (NDIA), Tampa, Florida, USA.
Trzciński, W.A., & Belaada, A. (2016). 1,1-Diamino-2,2-dinitroethene (DADNE, FOX- 7) – Properties and formulations (a Review). Cent. Eur J. Energ. Mater., 13(2), 527-544.
Janzon, B., Bergman, H., Eldsater, C., Lamnevik, C., & Ostmark, H. (2002). FOX-7 – A novel, high performance, low vulnerability high explosive for warhead applications. Paper presented at the 20th International Symposium on Ballistics, Orlando, Florida, USA, September 23-27.
Matyushin, Y.N., Afanas’ev, G.T., Lebedev, V.P, Mahov, M.N., & Pepekin, V.I. (2003). TATB and FOX-7: Thermochemistry, performance, detonability, sensitivity. Paper presented at the 34th International Annual Conference of the Institute of Chemical Technology (ICT), Karlsruhe, Germany, June 24-27.
Bellamy, A.J., Latypov, N.V., & Goede, P. (2004). Studies on the nitration of new potential precursors for FOX-7. Paper presented at the 7th Seminar on New Trends in Research on Energetic Materials, Pardubice, Czech Republic, April 20-22.
Cudziło, S., Chyłek, Z., & Diduszko, R. (2005). Crystallization and characterization of 1,1-diamino-2,2-dinitroethene (DADNE). Paper presented at the 36th International Annual Conference of ICT, Karlsruhe, Germany, June 28-July 1.
Trzciński, W.A., Cudziło, S., Chyłek, Z., & Szymańczyk, L. (2008). Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). Journal of Hazardous Materials, 157(2-3), 605-612. https://doi.org/10.1016/j.jhazmat.2008.01.026
Anniyappan, M., Talawar, M.B., Gore, G.M., Venugopalan, S., & Gandhe, B.R. (2006). Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts. J. Hazard. Mater., B 137, 812-819. https://doi.org/10.1016/j.jhazmat.2006.03.034
Mishra, V.S., Vadali, S.R., Garg, R.K., Joshi, V.S., Wasnik, R.D., & Asthana, S. (2013). Studies on FOX-7 based melt cast high explosive formulations. Cent. Eur J. Energ. Mater., 10(4), 569-580.
Latypov, N.V., Johansson, M., Holmgren, E., Sizova, E.V., Sizov, V.V., & Bellamy, A.J. (2007). On the synthesis of 1,1-diamino-2,2-dinitroethene (FOX-7) by nitration of 4,6- dihydroxy-2-methylpyrimidine. Org. Process Res. Dev., 11(1), 56-59. https://doi.org/10.1021/op068010t
Klapötke, T.M. ( 2011). Chemistry of high-energy materials (1st ed.). Berlin: De Gruyter.
Lips, H., & Menke, K. (2013). FOX-7/GAP rocket propellants for a shoulder launched projectile. Paper presented at the 27th International Symposium on Ballistics, Freiburg, Germany, April 22-26.
Wildegger-Gaissmaier, A.E. (2003). Aspects of thermobaric weaponry. ADF Health, 2003, 4, 3–6.
Yen, N.H., & Wang, L.Y. (2012). Reactive metals in explosives. Propellants Explosives Pyrotech., 37 (2), 143–155.
Schaefer RA, Nicolich SM. (2005). Development and evaluation of new high blast explosives. In: 36th International Conference of ICT Karlsruhe, Germany, June 28–July 1, V9.
Xing, X.L., Zhao, S.X., Wang, Z.Y., & Ge, G.T. (2014). Discussions on thermobaric explosives (TBXs). Propellants Explos Pyrotech., 39 (1), 14-17.
Türker, L. (2016). Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12(6), 423-445. https://doi.org/10.1016/j.dt.2016.09.002
Klapötke, T.M., Cudziło, S., Trzciński, W., A., & Paszula, J. (2024). Energy and blast performance of beryllium in a model thermobaric composition in comparison with aluminum and magnesium. Defence Technology, 36, 13-19. https://doi.org/10.1016/j.dt.2024.02.011
Jiao, X., Xu, Y., Zhou, T., Li, X., & Wu, Z. (2022). Enhancement of explosive effect of thermobaric explosive by metal reactive material. Propellants, Explosives, Pyrotechnics, 48(8), e202200351. https://doi.org/10.1002/prep.202200351
Kellett, R.M. (2009). Exothermic alloying Al-Ni bimetallic nanoparticles dispersed within explosives. PCT Int. Appl., WO 2009046287 A1 20090409; 2009.
Liang, K., Liu, Y., Hu, L., Liang, J., Lv, T., Wang, Y., & Hu, S. (2023). Effect of micron-sized zirconium powder on combustion decomposition behavior of molecular perovskite energetic material DAP-4. Chemical Physics Letters, 829, 140740. https://doi.org/10.1016/j.cplett.2023.140740
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev.,140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Glasstone, S., & Lewis, D. (1970). Elements of physical chemistry. London: Macmillan.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.