Differential Sandwich Theorems for Mittag-Leffler Function Associated with Fractional Integral Defined by Convolution Structure

  • Noor Yasser Jabir Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq
Keywords: analytic function, Mittag-Leffler function, fractional integral, differential subordination, differential superordination, convolution

Abstract

In this work, we use fractional integral and Mittag-Leffler function to obtain some results related to differential subordination and superordination defined by Hadamard product for univalent analytic functions defined in the open unit disk. These results are applied to obtain differential sandwich results. Our results extend corresponding previously known results.

References

Al-Dohiman, A. A., Frasin, B. A., Tasar, N., & Sakar, F. M. (2023). Classes of harmonic functions related to Mittag-Leffler function. Axioms, 12, 714. https://doi.org/10.3390/axioms12070714

Aydogan, M., Bshouty, D. Miller, S. S., & Sakar, F. M. (2021). Differential subordinations in harmonic mapping, New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative: Chapman University, 19-27.

Attiya, A. A. (2016). Some applications of Mittag-Leffler function in the unit disk. Filomat, 30(7), 2075-2081. https://doi.org/10.2298/FIL1607075A

Attiya, A. A., & Yassen, M. F. (2017). Some subordination and superordination results associated with generalized Srivastava-Attiya operator. Filomat, 31(1), 53-60. https://doi.org/10.2298/FIL1701053A

Bulboacă, T. (2002). Classes of first order differential superordinations. Demonstratio Mathematica, 35(2), 287-292. https://doi.org/10.1515/dema-2002-0209

Garg, M., Manoha, P., & Kalla, S. L. (2013). A Mittag-Leffler-type function of two variables. Integral Transforms and Special Functions, 24(11), 934-944. https://doi.org/10.1080/10652469.2013.789872

Kiryakova, V. (2010). The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Computers & Mathematics with Applications, 59(5), 1885-1895. https://doi.org/10.1016/j.camwa.2009.08.025

Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations: Theory and applications. Marcel Dekker Inc. https://doi.org/10.1201/9781482289817

Mittag-Leffler, G. M. (1903). Sur la nouvelle function. Comptes Rendus de l’Académie des Sciences, Paris, 137, 554-558.

Mittag-Leffler, G. M. (1905). Sur la representation analytique d’une function monogene (cinquieme note). Acta Mathematica, 29, 101-181. https://doi.org/10.1007/BF02403200

Prajapati, J. C., Jana, R. K., Saxena, R. K., & Shukla, A. K. (2013). Some results on the generalized Mittag-Leffler function operator. Journal of Inequalities and Applications, 2013, 1-6. https://doi.org/10.1186/1029-242X-2013-33

Rahrovi, S. (2015). Subordination and superordination properties for convolution operator. International Journal of Nonlinear Analysis and Applications, 6(2), 137-147.

Sakar, F. M., & Canbulat, A. (2021). Quasi-subordinations for a subfamily of bi-univalent functions associated with k-analogue of Bessel function. Journal of Mathematical Analysis, 12(1), 1-12.

Seoudy, T. M. (2017). Subordination and superordination results of p-valent analytic functions involving a linear operator. Boletim da Sociedade Paranaense de Matemática, 35(2), 223-234. https://doi.org/10.5269/bspm.v35i2.21993

Shukla, A. K., & Prajapati, J. C. (2007). On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336, 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018

Srivastava, H. M., & Owa, S. (Eds.). (1992). Current topics in analytic function theory. World Scientific Publishing Company. https://doi.org/10.1142/1628

Srivastava, H. M., & Tomovski, Z. (2009). Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation, 211, 198-210. https://doi.org/10.1016/j.amc.2009.01.055

Tang, H., & Deniz, E. (2014). Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Mathematica Scientia. Series B, 34, 1707-1719. https://doi.org/10.1016/S0252-9602(14)60116-8

Wanas, A. K., & Alina, A. L. (2020). Some subordination and superordination results for normalized analytic functions defined by convolution structure associated with Wanas differential operator. Earthline Journal of Mathematical Sciences, 4(1), 115-127. https://doi.org/10.34198/ejms.4120.115127

Wanas, A. K., & Khudher, F. C. (2023). Differential subordination and superordination for fractional integral involving Wanas operator defined by convolution structure. Earthline Journal of Mathematical Sciences, 12(1), 121-139. https://doi.org/10.34198/ejms.12123.121139

Xu, Q.-H., Xiao, H.-G., & Srivastava, H. M. (2014). Some applications of differential subordination and the Dziok-Srivastava convolution operator. Applied Mathematics and Computation, 230, 496-508. https://doi.org/10.1016/j.amc.2013.12.065

Published
2024-12-18
How to Cite
Jabir, N. Y., & Wanas, A. K. (2024). Differential Sandwich Theorems for Mittag-Leffler Function Associated with Fractional Integral Defined by Convolution Structure. Earthline Journal of Mathematical Sciences, 15(2), 155-168. https://doi.org/10.34198/ejms.15225.155168
Section
Articles