Applications of Fractional Calculus and Borel Distribution Series for Multivalent Functions on Complex Hilbert Space
Abstract
In this paper, we introduce applications of fractional calculus techniques for a family of multivalent analytic functions defined by the Borel distribution on Hilbert space. We derive several interesting properties, including coefficient estimates, extreme points, and convex combinations.
References
Chrakim, Y., Lee, J. S., & Lee, S. H. (1998). A certain subclass of analytic functions with negative coefficients for operators on Hilbert space. Math. Japonica, 47(1), 155-124.
Dunford, N., & Schwarz, J. T. (1958). Linear Operator, Part I, General Theory. New York-London: Interscience.
Fan, K. (1978). Analytic functions of a proper contraction. Math. Z., 160, 275-290. https://doi.org/10.1007/BF01237041
Fan, K. (1979). Julia’s lemma for operators. Math. Ann., 239, 241-245. https://doi.org/10.1007/BF01351489
Ghanim, F., & Darus, M. (2008). On new subclass of analytic p-valent functions with negative coefficients for operators on Hilbert space. Int. Math. Forum, 3(2), 69-77.
Goodman, A. W. (1983). Univalent functions (Vols. I and II). Washington, NJ: Polygonal House.
Joshi, S. B. (1998). On a class of analytic functions with negative coefficients for operators on Hilbert space. J. Approx. Theory Appl., 107-112.
Owa, S. (1985). On certain classes of p-valent functions with negative coefficients. Simon Stevin, 59, 385-402.
Owa, S. (1992). The quasi-Hadamard products of certain analytic functions. In H. M. Srivastava & S. Owa (Eds.), Current topics in analytic function theory (pp. 234-251). Singapore: World Scientific Publishing Company. https://doi.org/10.1142/9789814355896_0019
Selvaraj, C., Pamela, A. J., & Thirucheran, M. (2009). On a subclass of multivalent analytic functions with negative coefficients for contraction operators on Hilbert space. Int. J. Contemp. Math. Sci., 4(9), 447-456.
Wanas, A. K. (2015). A certain subclass of multivalent analytic functions with negative coefficients for operators on Hilbert space. J. Indones. Math. Soc., 21(2), 77-82. https://doi.org/10.22342/jims.21.2.228.77-82
Wanas, A. K., Choi, J., & Cho, N. E. (2021). Geometric properties for a family of holomorphic functions associated with Wanas operator defined on complex Hilbert space. Asian-European Journal of Mathematics, 14(7), 1-14. https://doi.org/10.1142/S1793557121501229
Wanas, A. K., & Frasin, B. A. (2018). Applications of fractional calculus for a certain subclass of multivalent analytic functions on complex Hilbert space. General Mathematics, 26(1-2), 11-23.
Wanas, A. K., & Jebur, S. K. (2018). Geometric properties for a family of p-valent holomorphic functions with negative coefficients for operators on Hilbert space. Journal of AL-Qadisiyah for Computer Science and Mathematics, 10(2), 1-5. https://doi.org/10.29304/jqcm.2018.10.2.361
Wanas, A. K., & Khuttar, J. A. (2020). Applications of Borel distribution series on analytic functions. Earthline Journal of Mathematical Sciences, 4(2), 71-82. https://doi.org/10.34198/ejms.4120.7182
Wanas, A. K., & Murugusundaramoorthy, G. (2021). Higher-order derivatives of multivalent analytic functions defined on complex Hilbert space. J. Adv. Math. Stud., 14(2), 197-205.
Wanas, A. K., & Swamy, S. R. (2020). New family of multivalent analytic functions defined on complex Hilbert space. Earthline Journal of Mathematical Sciences, 3(1), 155-165. https://doi.org/10.34198/ejms.3120.155165
Xiapei, Y. (1994). A subclass of analytic p-valent functions for operators on Hilbert space. Math. Japonica, 40(2), 303-308.
This work is licensed under a Creative Commons Attribution 4.0 International License.