Some Results for Third-Order Differential Subordination and Superordination Involving the Fractional Derivative and Differential Operator

  • Noor Yasser Jbair Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniya, Iraq
Keywords: differential subordination, differential superordination, univalent functions, fractional derivative, differential operator, admissible functions

Abstract

In the present paper, we define a certain suitable classes of admissible functions in the open unit disk associated with fractional derivative and differential operator. We derive some third-order subordination and superordination results for these classes. These results are applied to obtain third-order differential sandwich results. In addition, we indicate certain special cases and consequences for our results.

References

Ali, R. M., Ravichandran, V., & Seenivasagan, N. (2010). Differential subordination and superordination of analytic functions defined by the Dziok–Srivastava operator. Journal of the Franklin Institute, 347(9), 1762–1781. https://doi.org/10.1016/j.jfranklin.2010.08.009

Ali, R. M., Ravichandran, V., & Seenivasagan, N. (2010). On subordination and superordination of the multiplier transformation for meromorphic functions. Bulletin of the Malaysian Mathematical Sciences Society, 33, 311–324.

Antonion, J. A., & Miller, S. S. (2011). Third-order differential inequalities and subordinations in the complex plane. Complex Variables and Elliptic Equations, 56(5), 439–454. https://doi.org/10.1080/17476931003728404

Baricz, A., Deniz, E., Caglar, M., & Orhan, H. (2015). Differential subordinations involving generalized Bessel functions. Bulletin of the Malaysian Mathematical Sciences Society, 38, 1255-1280. https://doi.org/10.1007/s40840-014-0079-8

Breaz, D., Breaz, N., & Srivastava, H. M. (2009). An extension of the univalent condition for a family of integral operators. Applied Mathematics Letters, 22(1), 41–44. https://doi.org/10.1016/j.aml.2007.11.008

Bulboacă, T. (2005). Differential subordinations and superordinations: Recent results. House of Scientific Book Publ., Cluj-Napoca.

Carlson, B. C., & Shaffer, D. B. (1984). Starlike and prestarlike hypergeometric functions. SIAM Journal on Mathematical Analysis, 15(4), 737–754. https://doi.org/10.1137/0515057

Cho, N. E., Bilboacă, T., & Srivastava, H. M. (2012). A general family of integral operators and associated subordination and superordination properties of some special analytic function classes. Applied Mathematics and Computation, 219(5), 2278–2288. https://doi.org/10.1016/j.amc.2012.08.075

Farzana, H. A., Stephen, B. A., & Jeyaraman, M. P. (2014). Third-order differential subordination of analytic function defined by functional derivative operator. Annals of the Alexandru Ioan Cuza University – Mathematics, 1–16. https://doi.org/10.2478/aicu-2014-0028

Goluzin, G. M. (1953). On the majorization principle in function theory (in Russian). Doklady Akademii Nauk SSSR, 42, 647–650.

Hallenbeck, D. J., & Ruscheweyh, S. (1975). Subordination by convex functions. Proceedings of the American Mathematical Society, 52(1), 191–195. https://doi.org/10.1090/S0002-9939-1975-0374403-3

Jalab, H. A., & Ibrahim, R. W. (2015). Fractional Conway polynomials for image denoising with regularized fractional power parameters. Journal of Mathematical Imaging and Vision, 51(3), 442–450. https://doi.org/10.1007/s10851-014-0534-z

Jeyaraman, M. P., & Suresh, T. K. (2013). Third-order differential subordination of analytic functions. Acta Universitatis Apulensis, 35, 187–202.

Kuroki, K., & Srivastava, H. M. (2013). Some applications of the principle of differential subordination. Electronic Journal of Mathematical Analysis and Applications, 1(50), 40–46.

Miller, S. S., & Mocanu, P. T. (1987). Differential subordinations and inequalities in the complex plane. Journal of Differential Equations, 67(2), 199–211. https://doi.org/10.1016/0022-0396(87)90146-X

Miller, S. S., & Mocanu, P. T. (1981). Differential subordinations and univalent function. Michigan Mathematical Journal, 28(2), 157–171. https://doi.org/10.1307/mmj/1029002507

Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations: Theory and applications (Vol. 225). New York: Marcel Dekker. https://doi.org/10.1201/9781482289817

Miller, S. S., & Mocanu, P. T. (2003). Subordinations of differential superordinations. Complex Variables, 48(10), 815–826. https://doi.org/10.1080/02781070310001599322

Miller, S. S., & Mocanu, P. T. (1989). The theory and applications of second-order differential subordinations. Studia Universitatis Babeș-Bolyai Mathematica, 34(1), 3–33.

Oshah, A., & Darus, M. (2014). Differential sandwich with new generalized derivative operator. Advances in Mathematics: Scientific Journal, 3(2), 117–125.

Robinson, R. M. (1947). Univalent majorants. Transactions of the American Mathematical Society, 61(1), 1–35. https://doi.org/10.1090/S0002-9947-1947-0019114-6

Ruscheweyh, S. (1975). New criteria for univalent functions. Proceedings of the American Mathematical Society, 49(1), 109–115. https://doi.org/10.1090/S0002-9939-1975-0367176-1

Srivastava, H. M., & Owa, S. (Eds.). (1992). Current topics in analytic function theory. Singapore: World Scientific Publishing. https://doi.org/10.1142/1628

Suffridge, T. J. (1970). Some remarks on convex maps of the unit disk. Duke Mathematical Journal, 37(4), 775–777. https://doi.org/10.1215/S0012-7094-70-03792-0

Tang, H., & Deniz, E. (2014). Third-order differential subordinations results for analytic functions involving the generalized Bessel functions. Acta Mathematica Scientia, 34(6), 1707–1719. https://doi.org/10.1016/S0252-9602(14)60116-8

Tang, H., Srivastava, H. M., Deniz, E., & Li, S. (2015). Third-order differential superordination involving the generalized Bessel functions. Bulletin of the Malaysian Mathematical Sciences Society, 38, 1669–1688. https://doi.org/10.1007/s40840-014-0108-7

Tang, H., Srivastava, H. M., Li, S., & Ma, L. (2014). Third-order differential subordinations and superordination results for meromorphically multivalent functions associated with the Liu–Srivastava operator. Abstract and Applied Analysis, 2014, 1–22. https://doi.org/10.1155/2014/792175

Xu, Q.-H., Xiao, H.-G., & Srivastava, H. M. (2014). Some applications of differential subordination and the Dziok–Srivastava convolution operator. Applied Mathematics and Computation, 230, 496–508. https://doi.org/10.1016/j.amc.2013.12.065

Published
2025-04-25
How to Cite
Jbair, N. Y., & Wanas, A. K. (2025). Some Results for Third-Order Differential Subordination and Superordination Involving the Fractional Derivative and Differential Operator. Earthline Journal of Mathematical Sciences, 15(4), 559-581. https://doi.org/10.34198/ejms.15425.559581
Section
Articles