A New Class of Univalent Functions Defined by Differential Operator
Abstract
In the present work, we submit and study a new class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$ containing analytic univalent functions defined by new differential operator $D_{\lambda, \alpha}^{z, m, t}$ in the open unit disk $E=\{s \in \mathbb{C}:|s|<1\}$. We get some geometric properties, such as, coefficient estimate, growth and distortion theorems, convex set, radii of convexity and starlikeness, weighted mean, arithmetic mean and partial sums for functions belonging to the class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$.
References
Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Sǎlǎgean operator. International Journal of Mathematics and Mathematical Sciences, 27, 1429-1436. https://doi.org/10.1155/S0161171204108090
Atshan, W. G., & Ghawi, H. Y. (2012). On a new class of univalent functions with negative coefficients. European Journal of Scientific Research, 74(4), 601-608.
Frasin, B. (2020). A new differential operator of analytic functions involving binomial series. Boletim da Sociedade Paranaense de Matemática, 38(5), 205-213. https://doi.org/10.5269/bspm.v38i5.40188
Hassan, L. H., & Al-Ziadi, N. A. J. (2023). New class of p-valent functions defined by multiplier transformations. Utilitas Mathematica, 120, 182-200.
Liu, D., Araci, S., & Khan, B. (2022). A subclass of Janowski starlike functions involving Mathieu-type series. Symmetry, 14(2), 1-15. https://doi.org/10.3390/sym14010002
Magesh, N., & Prameela, V. (2013). Certain subclasses of uniformly convex functions and corresponding class of starlike functions. Malaya Journal of Matematik, 1(1), 18-26. https://doi.org/10.26637/mjm101/003
Ramadhan, A. M., & Al-Ziadi, N. A. J. (2022). New class of holomorphic univalent functions defined by linear operator. Journal of Advances in Mathematics, 21, 116-125. https://doi.org/10.24297/jam.v21i.9258
Rossdy, M., Omar, R., & Soh, S. C. (2024). New differential operator for analytic univalent functions associated with binomial series. AIP Conference Proceedings, 2905, 070001. https://doi.org/10.1063/5.0171850
Sălăgean, G. S. (1983). Subclasses of univalent functions. In Complex Analysis — Fifth Romanian-Finnish Seminar (pp. 362-372). Springer, Berlin-Heidelberg. https://doi.org/10.1007/BFb0066543
Silverman, H. (1997). Partial sums of starlike and convex functions. Journal of Mathematical Analysis and Applications, 209, 221-227. https://doi.org/10.1006/jmaa.1997.5361
Srivastava, H. M., & Attiya, A. A. (2007). Integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms and Special Functions, 18, 207-216. https://doi.org/10.1080/10652460701208577
Wanas, A. K., & Ahsoni, H. M. (2022). Some geometric properties for a class of analytic functions defined by beta negative binomial distribution series. Earthline Journal of Mathematical Sciences, 9(1), 105-116. https://doi.org/10.34198/ejms.9122.105116
Yunus, Y., Akbarally, A. B., & Halim, S. A. (2017). Strongly starlike functions associated with a new operator. In AIP Conference Proceedings, 1870(1), 040001. https://doi.org/10.1063/1.4995833
This work is licensed under a Creative Commons Attribution 4.0 International License.