A New Class of Univalent Functions Defined by Differential Operator

  • Iqbal Ali Hasoon Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
  • Najah Ali Jiben Al-Ziadi Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
Keywords: analytic function, univalent function, differential operator, coefficient estimate, distortion bound, radii of starlikeness and convexity, partial sums

Abstract

In the present work, we submit and study a new class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$ containing analytic univalent functions defined by new differential operator $D_{\lambda, \alpha}^{z, m, t}$ in the open unit disk $E=\{s \in \mathbb{C}:|s|<1\}$. We get some geometric properties, such as, coefficient estimate, growth and distortion theorems, convex set, radii of convexity and starlikeness, weighted mean, arithmetic mean and partial sums for functions belonging to the class $\mathcal{S}_{\lambda, \alpha, b}^{z, m, t}(\beta, \gamma, \omega, \mu)$.

References

Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Sǎlǎgean operator. International Journal of Mathematics and Mathematical Sciences, 27, 1429-1436. https://doi.org/10.1155/S0161171204108090

Atshan, W. G., & Ghawi, H. Y. (2012). On a new class of univalent functions with negative coefficients. European Journal of Scientific Research, 74(4), 601-608.

Frasin, B. (2020). A new differential operator of analytic functions involving binomial series. Boletim da Sociedade Paranaense de Matemática, 38(5), 205-213. https://doi.org/10.5269/bspm.v38i5.40188

Hassan, L. H., & Al-Ziadi, N. A. J. (2023). New class of p-valent functions defined by multiplier transformations. Utilitas Mathematica, 120, 182-200.

Liu, D., Araci, S., & Khan, B. (2022). A subclass of Janowski starlike functions involving Mathieu-type series. Symmetry, 14(2), 1-15. https://doi.org/10.3390/sym14010002

Magesh, N., & Prameela, V. (2013). Certain subclasses of uniformly convex functions and corresponding class of starlike functions. Malaya Journal of Matematik, 1(1), 18-26. https://doi.org/10.26637/mjm101/003

Ramadhan, A. M., & Al-Ziadi, N. A. J. (2022). New class of holomorphic univalent functions defined by linear operator. Journal of Advances in Mathematics, 21, 116-125. https://doi.org/10.24297/jam.v21i.9258

Rossdy, M., Omar, R., & Soh, S. C. (2024). New differential operator for analytic univalent functions associated with binomial series. AIP Conference Proceedings, 2905, 070001. https://doi.org/10.1063/5.0171850

Sălăgean, G. S. (1983). Subclasses of univalent functions. In Complex Analysis — Fifth Romanian-Finnish Seminar (pp. 362-372). Springer, Berlin-Heidelberg. https://doi.org/10.1007/BFb0066543

Silverman, H. (1997). Partial sums of starlike and convex functions. Journal of Mathematical Analysis and Applications, 209, 221-227. https://doi.org/10.1006/jmaa.1997.5361

Srivastava, H. M., & Attiya, A. A. (2007). Integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms and Special Functions, 18, 207-216. https://doi.org/10.1080/10652460701208577

Wanas, A. K., & Ahsoni, H. M. (2022). Some geometric properties for a class of analytic functions defined by beta negative binomial distribution series. Earthline Journal of Mathematical Sciences, 9(1), 105-116. https://doi.org/10.34198/ejms.9122.105116

Yunus, Y., Akbarally, A. B., & Halim, S. A. (2017). Strongly starlike functions associated with a new operator. In AIP Conference Proceedings, 1870(1), 040001. https://doi.org/10.1063/1.4995833

Published
2024-07-24
How to Cite
Hasoon, I. A., & Al-Ziadi, N. A. J. (2024). A New Class of Univalent Functions Defined by Differential Operator. Earthline Journal of Mathematical Sciences, 14(5), 1141-1157. https://doi.org/10.34198/ejms.14524.11411157
Section
Articles