New Class of Multivalent Functions Defined by Generalized (p,q)-Bernard Integral Operator
Abstract
Making use of the generalized $(p, q)$-Bernardi integral operator, we introduce and study a new class $\mathcal{F J}_{p, q}^m(\alpha, \delta, \lambda, \gamma)$ of multivalent analytic functions with negative coefficients in the open unit disk $E$. Several geometric characteristics are obtained, like, coefficient estimate, radii of convexity, close-to-convexity and starlikeness, closure theorems, extreme points, integral means inequalities, neighborhood property and convolution properties for functions belonging to the class $\mathcal{F} \mathcal{J}_{p, q}^m(\alpha, \delta, \lambda, \gamma)$.
References
Ajil, A. M. (2023). A study of some problems related with univalent, multivalent and bi-univalent functions (Master's thesis, University of Al-Qadisiyah, College of Education, Department of Mathematics).
Al-Amiri, H. S. (1989). On a subclass of close-to-convex functions with negative coefficients. Mathematics, 31(54), 1-7.
Altintaş, O. (1991). On a subclass of certain starlike functions with negative coefficients. Mathematica Japonica, 36, 489-495.
Altintaş, O., Irmak, H., & Srivastava, H. M. (1995). Fractional calculus and certain starlike functions with negative coefficients. Computers & Mathematics with Applications, 30(2), 9-16. https://doi.org/10.1016/0898-1221(95)00073-8
Aqlan, E. S. (2004). Some problems connected with geometric function theory (Doctoral dissertation, Pune University, Pune).
Bharati, R., Parvatham, R., & Swaminathan, A. (1997). On a subclass of uniformly convex functions and corresponding class of starlike functions. Tamkang Journal of Mathematics, 28(1), 17-32. https://doi.org/10.5556/j.tkjm.28.1997.4330
Goodman, A. W. (1957). Univalent functions and analytic curves. Proceedings of the American Mathematical Society, 8(3), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
Gupta, V. P., & Jain, P. K. (1976). Certain classes of univalent functions with negative coefficients II. Bulletin of the Australian Mathematical Society, 15, 467-473. https://doi.org/10.1017/S0004972700022917
Hadi, S. H., & Darus, M. (2023). A class of harmonic (p,q)-starlike functions involving a generalized (p,q)-Bernardi integral operator. Issues of Analysis, 12(2), 17-36. https://doi.org/10.15393/j3.art.2023.12850
Hassan, L. H., & Al-Ziadi, N. A. J. (2023). New class of p-valent functions defined by multiplier transformations. Utilitas Mathematica, 120, 182-200.
Janani, T., & Murugusundaramoorthy, G. (2014). Inclusion results on subclass of starlike and convex functions associated with Struve functions. Italian Journal of Pure and Applied Mathematics, 32, 467-476. https://doi.org/10.4172/2168-9679.1000180
Khaimar, S. M., & More, M. (2009). On a subclass of multivalent β-uniformly starlike and convex functions defined by a linear operator. IAENG International Journal of Applied Mathematics, 39(3), Article ID IJAM_39_06.
Littlewood, J. E. (1925). On inequalities in the theory of functions. Proceedings of the London Mathematical Society, 23(2), 481-519. https://doi.org/10.1112/plms/s2-23.1.481
Noor, K. I., Riaz, S., & Noor, M. A. (2017). On q-Bernardi integral operator. TWMS Journal of Pure and Applied Mathematics, 8(1), 3-11.
Owa, S. (1985). On certain classes of p-valent functions with negative coefficients. Simon Stevin, 59(4), 385-402.
Ramadhan, A. M., & Al-Ziadi, N. A. J. (2022). New class of multivalent functions with negative coefficients. Earthline Journal of Mathematical Sciences, 10(2), 271-288. https://doi.org/10.34198/ejms.10222.271288
Rosy, T. (2002). Study on subclass of univalent functions (Master's thesis, University of Madras).
Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proceedings of the American Mathematical Society, 81(4), 521-527. https://doi.org/10.1090/S0002-9939-1981-0601721-6
Sarangi, S. M., & Uralegaddi, B. A. (1978). The radius of convexity and starlikeness of certain classes of analytic functions with negative coefficients I. Atti della Accademia Nazionale dei Lincei Rendiconti Classe di Scienze Fisiche Matematiche e Naturali, 65(8), 34-42.
Silverman, H. (1975). Univalent functions with negative coefficients. Proceedings of the American Mathematical Society, 51(1), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
Srivastava, H. M., Hadi, S. H., & Darus, M. (2023). Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 117, 50. https://doi.org/10.1007/s13398-022-01378-3
Stephen, A., & Subramanian, K. G. (1998). On a subclass of Noshiro-type analytic functions with negative coefficients. Conference Proceedings of the Ramanujan Mathematical Society.
Subramanian, K. G., Murugusundaramoorthy, G., Balasubrahmanyam, P., & Silverman, H. (1995). Subclass of uniformly convex and uniformly starlike functions. Mathematica Japonica, 42(3), 517-522.
Subramanian, K. G., Sudharsan, T. V., Balasubrahmanyam, P., & Silverman, H. (1998). Class of uniformly starlike functions. Publicationes Mathematicae Debrecen, 53(4), 309-315. https://doi.org/10.5486/PMD.1998.1946
Wanas, A. K., & Ahsoni, H. M. (2022). Some geometric properties for a class of analytic functions defined by beta negative binomial distribution series. Earthline Journal of Mathematical Sciences, 9(1), 105-116. https://doi.org/10.34198/ejms.9122.105116
This work is licensed under a Creative Commons Attribution 4.0 International License.