Coefficient Bounds for New Subclasses of m-Fold Symmetric Holomorphic Bi-Univalent Functions

  • Ali Mohammed Ramadhan Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
  • Najah Ali Jiben Al-Ziadi Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
Keywords: holomorphic function, m-fold symmetric holomorphic function, bi-univalent function, m-fold symmetric holomorphic bi-univalent function, coefficient bounds

Abstract

In the present paper, we investigate two new subclasses 〖AR〗_(Σ_m ) (δ,λ;α) and 〖AR〗_(Σ_m ) (δ,λ;β) of Σ_m consisting of m-fold symmetric holomorphic bi-univalent functions in the open unit disk Δ. For functions from the two classes described here, we obtain estimates on the initial bounds |d_(m+1) | and |d_(2m+1) |. In addition, we get new special cases for our results.

References

Ş. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics 2015 (2015), Article ID 241683, 5 pp. https://doi.org/10.1155/2015/241683

W. G. Atshan and N. A. J. Al-Ziadi, Coefficients bounds for a general subclasses of m fold symmetric bi-univalent functions, J. Al-Qadisiyah Comput. Sci. Math. 9(2) (2017), 33-39. https://doi.org/10.29304/jqcm.2017.9.2.141

D. Brannan and J. G. Clunie (Eds), Aspects of contemporary complex analysis, (Proceedings of the NATO advanced study institute held at the Univ. of Durham, Durham; July 1-20, 1979), New York, London: Academic Press, 1980.

P. L. Duren, Univalent Functions, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.

W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329. https://doi.org/10.1090/S0002-9939-1989-0930244-7

T. R. K. Kumar, S. Karthikeyan, S. Vijayakumar and G. Ganapathy, Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions, Advances in Dynamical Systems and Applications 16(2) (2021), 789-800.

M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

X. Li and A. Wang, Two new subclasses of bi-univalent functions, International Math. Forum 7(30) (2012), 1495-1504.

G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstract and Applied Analysis 2013 (2013), Article ID 573017, 3 pp. https://doi.org/10.1155/2013/573017

C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269. https://doi.org/10.1307/mmj/1028998726

T. G. Shaba and A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudu-starlike functions, Earthline Journal of Mathematical Sciences 6(2) (2021), 209-223. https://doi.org/10.34198/ejms.6221.209223

S. Sivasubramanian and R. Sivakumar, Initial coefficient bound for m-fold symmetric bi-λ-convex functions, J. Math. Inequalities 10(3) (2016), 783-791. https://doi.org/10.7153/jmi-10-63

H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis 41 (2015), 153-164. https://doi.org/10.17114/j.aua.2015.41.12

H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia 36(3) (2016), 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical J. 7(2) (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011

A. K. Wanas and H. Tang, Initial coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function, Mathematica Moravica 24(2) (2020), 51-61. https://doi.org/10.5937/MatMor2002051K

Published
2022-07-05
How to Cite
Ramadhan, A. M., & Al-Ziadi, N. A. J. (2022). Coefficient Bounds for New Subclasses of m-Fold Symmetric Holomorphic Bi-Univalent Functions. Earthline Journal of Mathematical Sciences, 10(2), 227-239. https://doi.org/10.34198/ejms.10222.227239
Section
Articles