Weakly Reich Type Cyclic Contraction Mapping Principle

  • Clement Boateng Ampadu 31 Carrolton Road, Boston, MA 02132-6303, USA
Keywords: metric space, fixed point theorem, weakly Reich type cyclic contraction

Abstract

In this paper we introduce the notion of Reich type cyclic weakly contraction and prove a fixed point theorem. Some Corollaries are consequences of the main result.

Downloads

Download data is not yet available.

References

Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.

Kannan, R. (1969). Some results on fixed points-II. American Mathematical Monthly, 76, 405-408. https://doi.org/10.2307/2316437

Kirk, W. A., Srinivasan, P. S., & Veeramani, P. (2003). Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory, 4(1), 79-89.

Chandok, S. (2013). A fixed point result for weakly Kannan type cyclic contractions. International Journal of Pure and Applied Mathematics, 82(2), 253-260.

Chatterjea, S. K. (1972). Fixed point theorem. C. R. Acad. Bulgare Sci., 25, 727-730.

Chandok, S., & Postolache, M. (2013). Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory and Applications, 2013, 28. https://doi.org/10.1186/1687-1812-2013-28

Published
2024-07-04
How to Cite
Ampadu, C. B. (2024). Weakly Reich Type Cyclic Contraction Mapping Principle. Earthline Journal of Mathematical Sciences, 14(5), 1067-1075. https://doi.org/10.34198/ejms.14524.10671075
Section
Articles

Most read articles by the same author(s)

1 2 3 4 > >>