Weakly Reich Type Cyclic Contraction Mapping Principle

  • Clement Boateng Ampadu 31 Carrolton Road, Boston, MA 02132-6303, USA
Keywords: metric space, fixed point theorem, weakly Reich type cyclic contraction

Abstract

In this paper we introduce the notion of Reich type cyclic weakly contraction and prove a fixed point theorem. Some Corollaries are consequences of the main result.

References

Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.

Kannan, R. (1969). Some results on fixed points-II. American Mathematical Monthly, 76, 405-408. https://doi.org/10.2307/2316437

Kirk, W. A., Srinivasan, P. S., & Veeramani, P. (2003). Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory, 4(1), 79-89.

Chandok, S. (2013). A fixed point result for weakly Kannan type cyclic contractions. International Journal of Pure and Applied Mathematics, 82(2), 253-260.

Chatterjea, S. K. (1972). Fixed point theorem. C. R. Acad. Bulgare Sci., 25, 727-730.

Chandok, S., & Postolache, M. (2013). Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory and Applications, 2013, 28. https://doi.org/10.1186/1687-1812-2013-28

Published
2024-07-04
How to Cite
Ampadu, C. B. (2024). Weakly Reich Type Cyclic Contraction Mapping Principle. Earthline Journal of Mathematical Sciences, 14(5), 1067-1075. https://doi.org/10.34198/ejms.14524.10671075
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>