Strongly log-biconvex Functions and Applications
Abstract
In this paper, we consider some new classes of log-biconvex functions. Several properties of the log-biconvex functions are studied. We also discuss their relations with convex functions. Several interesting results characterizing the log-biconvex functions are obtained. New parallelogram laws are obtained as applications of the strongly log-biconvex functions. Optimality conditions of differentiable strongly log-biconvex are characterized by a class of bivariational inequalities. Results obtained in this paper can be viewed as significant improvement of previously known results.
References
G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl. 9(5) (2018), 265-274.
T. Antczak, On (p,r)-invex sets and functions, J. Math. Anal. Appl. 263 (2001), 355-379. https://doi.org/10.1006/jmaa.2001.7574
S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66. https://doi.org/10.1007/BF02592679
B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics 7(11) (2019), 1028. https://doi.org/10.3390/math7111028
C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018.
K. Nikodem and Z. S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 1 (2011), 83-87. https://doi.org/10.15352/bjma/1313362982
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
M. A. Noor and K. I. Noor, Exponentially convex functions, J. Orisa Math. Soc. 38(01-02) (2019), 33-51.
M. A. Noor and K. I. Noor, Strongly exponentially convex functions, U.P.B. Bull. Sci. Appl. Math. Series A 81(4) (2019), 75-84.
M. A. Noor and K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math. 4(6) (2019), 1554-1568. https://doi.org/10.3934/math.2019.6.1554
M. A. Noor and K. I. Noor, Strongly log-convex functions, Inform. Sci. Letters 10(1) (2021), 33-38. https://doi.org/10.18576/isl/100105
M. A. Noor and K. I. Noor, New characterizations of higher order strongly $log$-convex functions, J. Adanc. Math. Studies 14(3) (2021).
M. A. Noor and K. I. Noor, Higher order strongly generalized convex functions, Appl. Math. Inf. Sci. 14(1) (2020), 133-139. https://doi.org/10.18576/amis/140117
M. A. Noor and K. I. Noor, Higher order strongly exponentially biconvex functions and bivariational inequalities, J. Math. Anal. 12(2) (2021), 23-43.
M. A. Noor and K. I. Noor, Higher order strongly biconvex functions and biequilibrium problems, textit{Advan. Lin. Algebr. Matrix Theory} 11(2) (2021).
M. A. Noor and K. I. Noor, Exponentially biconvex functions and bivariational inequalities, in: Advances in Mathematical Analysis and Multidisciplinary Applications (Edited: B. Hazarika, S. Acharjee and H. M. Srivastava), CRC Press, Year.
M. A. Noor, K. I. Noor and M. U. Awan, New prospective of $log$-convex functions, Appl. Math. Inform. Sci. 14(5) (2021), 847-854. https://doi.org/10.18576/amis/140512
M. A. Noor, K. I. Noor and M. T. Rassias, Strongly biconvex functions and bivariational inequalities, in: Mathematical Analysis, Optimization, Approximation and Applications (Edited: Panos M. Pardalos and Th. M. Rassias), World Scientific Publishing Company, Singapore, Year.
M. A. Noor, K. I. Noor and M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170(1) (2020), 981-1064. https://doi.org/10.1007/s10440-020-00366-2
S. Pal and T. K. Wong, Exponentially concave functions and a new information geometry, Ann. Probab. 46(2) (2018), 1070-1113. https://doi.org/10.1214/17-AOP1201
B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 2-75.
Y. X. Zhao, S. Y. Wang and L. Coladas Uria, Characterizations of $r$-convex functions, J. Optim. Theory Appl. 145 (2010), 186-195. https://doi.org/10.1007/s10957-009-9617-1
D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6(3) (1996), 714-726. https://doi.org/10.1137/S1052623494250415
This work is licensed under a Creative Commons Attribution 4.0 International License.