New Iterative Methods and Sensitivity Analysis for Inverse Quasi Variational Inequalities
Abstract
Some classes of inverse quasi variational inequalities, which can be viewed as a novel important special case of quasi variational equalities, introduced in Noor [47] in 1988, are investigated. Using various techniques such as Wiener-Hopf equations, auxiliary principle, dynamical systems coupled with finite difference approach we suggest and analyzed a number of new and known numerical techniques for solving inverse quasi variational inequalities. Convergence analysis of these methods is investigated under suitable conditions. Sensitivity analysis is also investigated. One can obtain a number of new classes of inverse variational inequalities by interchanging the role of operators. Various special cases are discussed as applications of the main results. Several open problems are suggested for future research.
References
Alvarez, F. (2003). Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM Journal on Optimization, 14(2), 773–782. https://doi.org/10.1137/S1052623403427859
Alshejary, A. A., Noor, M. A., and Noor, K. I. (2024). Recent developments in general quasi variational. International Journal of Analysis and Applications, 22. https://doi.org/10.28924/2291-8639-22-2024-84
Ames, W. F. (1992). Numerical Methods for Partial Differential Equations. Academic Press.
Ashish, K., Rani, M., and Chugh, R. (2014). Julia sets and Mandelbrot sets in Noor orbit. Applied Mathematics and Computation, 228(1), 615–631. https://doi.org/10.1016/j.amc.2013.11.077
Ashish, K., Chugh, R., and Rani, M. (2021). Fractals and Chaos in Noor Orbit: A Four-Step Feedback Approach. LAP LAMBERT Academic Publishing.
Ashish, K., Cao, J., and Noor, M. A. (2023). Stabilization of fixed points in chaotic maps using Noor orbit with applications in cardiac arrhythmia. Journal of Applied Analysis and Computation, 13(5), 2452–2470. https://doi.org/10.11948/20220350
Aussel, D., Gupta, R., and Mehrab, A. (2013). Gap functions and error bounds for inverse quasi-variational inequality problems. Journal of Mathematical Analysis and Applications, 407(2), 270–280. https://doi.org/10.1016/j.jmaa.2013.03.049
Barbagallo, A., and Lo Bainco, S. G. (2024). A random elastic traffic equilibrium problem via stochastic quasi-variational inequalities. Communications in Nonlinear Science and Numerical Simulation, 131, 107798. https://doi.org/10.1016/j.cnsns.2023.107798
Bensoussan, A., and Lions, J. L. (1978). Application des inégalités variationnelles en contrôle stochastique. Bordas (Dunod).
Bnouhachem, A., Noor, M. A., Khalfaoui, M., and Zhaohan, S. (2011). A self-adaptive projection method for a class of variant variational inequalities. Journal of Mathematical Inequalities, 5(1), 117–129.
Chairatsiripong, C., and Thianwan, T. (2022). Novel Noor iterations technique for solving nonlinear equations. AIMS Mathematics, 7(6), 10958–10976. https://doi.org/10.3934/math.2022612
Cho, S. Y., Shahid, A. A., Nazeer, W., and Kang, S. M. (2016). Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus, 5, 1843. https://doi.org/10.1186/s40064-016-3530-5
Cottle, R. W., Pang, J.-S., and Stone, R. E. (2009). The Linear Complementarity Problem. SIAM.
Cristescu, G., and Lupsa, L. (2002). Non-Connected Convexities and Applications. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-0003-2
Cristescu, G., and Gianu, G. (2009). Detecting the non-convex sets with Youness and Noor types convexities. Buletin Stiintific al Universitatii Politehnica Timisoara, Matematica-Fizica, 54(68)(2).
Cristescu, G., and Mihail, G. (2009). Shape properties of Noor's g-convex sets. In Proceedings of the Twelfth Symposium of Mathematical Applications, Timisoara, Romania, 1–13.
Dafermos, S. (1988). Sensitivity analysis in variational inequalities. Mathematics of Operations Research, 13, 421–434. https://doi.org/10.1287/moor.13.3.421
Dey, S., and Reich, S. (2023). A dynamical system for solving inverse quasi-variational inequalities. Optimization, 72. https://doi.org/10.1080/02331934.2023.21735
Dupuis, P., and Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44, 7–42. https://doi.org/10.1007/BF02073589
Glowinski, R., Lions, J. L., and Tremolieres, R. (1981). Numerical Analysis of Variational Inequalities. North-Holland.
Glowinski, R., and Le Tallec, P. (1989). Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics. SIAM. https://doi.org/10.1137/1.9781611970838
Han, Y., Huang, N., Lu, J., and Xiao, Y. (2017). Existence and stability of solutions to inverse variational inequality problems. Applied Mathematics and Mechanics (English Edition), 38(5), 749–764. https://doi.org/10.1007/s10483-017-2191-9
He, B. S. (1999). A Goldstein's type projection method for a class of variant variational inequalities. Journal of Computational Mathematics, 17(4), 425–434.
He, B., He, X., and Liu, H. X. (2010). Solving a class of constrained 'black-box' inverse variational inequalities. European Journal of Operational Research, 204, 391–401. https://doi.org/10.1016/j.ejor.2009.07.006
He, X., and Liu, H. X. (2011). Inverse variational inequalities with projection-based solution methods. European Journal of Operational Research, 208, 12–18. https://doi.org/10.1016/j.ejor.2010.08.022
He, S., and Dong, Q. L. (2018). An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities. Journal of Inequalities and Applications, 2018, Article 351. https://doi.org/10.1186/s13660-018-1943-0
He, B. S., Liu, H. X., Li, M., and He, X. Z. (2006). PPA-based methods for monotone inverse variational inequalities. Sciencepaper Online. http://www.paper.edu.cn
Jabeen, S., Mohsin, B. B., Noor, M. A., and Noor, K. I. (2021). Inertial projection methods for solving general quasi-variational inequalities. AIMS Mathematics, 6(2), 1075–1086. https://doi.org/10.3934/math.2021064
Jabeen, S., Noor, M. A., and Noor, K. I. (2022). Some inertial methods for solving a system of quasi-variational inequalities. Journal of Advanced Mathematical Studies, 15(1), 1–10.
Jabeen, S., Macías-Díaz, J. E., Noor, M. A., Khan, M. B., and Noor, K. I. (2022). Design and convergence analysis of some implicit inertial methods for quasi-variational inequalities via the Wiener-Hopf equations. Applied Numerical Mathematics, 182, 76–86. https://doi.org/10.1016/j.apnum.2022.08.001
Khan, A. G., Noor, M. A., and Noor, K. I. (2015). Dynamical systems for general quasi-variational inequalities. Annals of Functional Analysis, 6(1), 193–209. https://doi.org/10.15352/afa/06-1-14
Kinderlehrer, D., and Stampacchia, G. (2000). An Introduction to Variational Inequalities and Their Applications. SIAM.
Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody, 12, 747–756.
Kwuni, Y. C., Shahid, A. A., Nazeer, W., Butt, S. I., Abbas, M., and Kang, S. M. (2019). Tricorns and multicorns in Noor Orbit with s-convexity. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2928796
Lions, J., and Stampacchia, G. (1967). Variational inequalities. Communications on Pure and Applied Mathematics, 20, 493–519. https://doi.org/10.1002/cpa.3160200302
Lemke, C. F. (1965). Bimatrix equilibrium points and mathematical programming. Management Science, 11, 681–689. https://doi.org/10.1287/mnsc.11.7.681
Mijajlovic, N., Milojica, J., and Noor, M. A. (2019). Gradient-type projection methods for quasi-variational inequalities. Optimization Letters, 13, 1885–1896. https://doi.org/10.1007/s11590-018-1323-1
Nagurney, A., and Zhang, D. (1996). Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic Publishers.
Natarajan, S. K., and Negi, D. (2024). Green innovations utilizing fractal and power for solar panel optimization. In R. Sharma, G. Rana, and S. Agarwal (Eds.), Green Innovations for Industrial Development and Business Sustainability (pp. 146–152). CRC Press. https://doi.org/10.1201/9781003458944-10
Niculescu, C. P., and Persson, L. E. (2018). Convex Functions and Their Applications. Springer-Verlag. https://doi.org/10.1007/978-3-319-78337-6_1
Noor, M. A. (1971). Riesz-Fréchet Theorem and Monotonicity (Master's thesis). Queen's University, Kingston, Ontario, Canada.
Noor, M. A. (1975). On Variational Inequalities (Doctoral dissertation). Brunel University, London, U.K.
Noor, M. A. (1985). An iterative scheme for a class of quasi-variational inequalities. Journal of Mathematical Analysis and Applications, 110, 463–468. https://doi.org/10.1016/0022-247X(85)90308-7
Noor, M. A. (1986). Generalized quasi-complementarity problems. Journal of Mathematical Analysis and Applications, 120, 321–327. https://doi.org/10.1016/0022-247X(86)90219-2
Noor, M. A. (1988). The quasi-complementarity problem. Journal of Mathematical Analysis and Applications, 130, 344–353. https://doi.org/10.1016/0022-247X(88)90310-1
Noor, M. A. (1988). General variational inequalities. Applied Mathematics Letters, 1(2), 119–121. https://doi.org/10.1016/0893-9659(88)90054-7
Noor, M. A. (1988). Quasi variational inequalities. Applied Mathematics Letters, 1(4), 367–370. https://doi.org/10.1016/0893-9659(88)90152-8
Noor, M. A. (1988). Fixed point approach for complementarity problems. Journal of Mathematical Analysis and Applications, 133, 437–448. https://doi.org/10.1016/0022-247X(88)90413-1
Noor, M. A. (1992). General algorithm for variational inequalities. Journal of Optimization Theory and Applications, 73, 409–413. https://doi.org/10.1007/BF00940189
Noor, M. A. (1997). Sensitivity analysis for quasi variational inequalities. Journal of Optimization Theory and Applications, 95(2), 399–407. https://doi.org/10.1023/A:1022691322968
Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications, 251, 217–230. https://doi.org/10.1006/jmaa.2000.7042
Noor, M. A. (2000). Variational inequalities for fuzzy mappings (III). Fuzzy Sets and Systems, 110(1), 101–108. https://doi.org/10.1016/S0165-0114(98)00131-6
Noor, M. A. (2002). A Wiener-Hopf dynamical system and variational inequalities. New Zealand Journal of Mathematics, 31, 173–182.
Noor, M. A. (2004). Some developments in general variational inequalities. Applied Mathematics and Computation, 152, 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7
Noor, M. A. (2002). Stability of the modified projected dynamical systems. Computers & Mathematics with Applications, 44, 1–5. https://doi.org/10.1016/S0898-1221(02)00125-6
Noor, M. A. (2007). Merit functions for quasi variational inequalities. Journal of Mathematical Inequalities, 1, 259–269.
Noor, M. A. (2008). Differentiable nonconvex functions and general variational inequalities. Applied Mathematics and Computation, 199(1–2), 623–630. https://doi.org/10.1016/j.amc.2007.10.023
Noor, M. A. (2009). Extended general variational inequalities. Applied Mathematics Letters, 22, 182–185. https://doi.org/10.1016/j.aml.2008.03.007
Noor, M. A. (2009). Principles of Variational Inequalities. LAP Lambert Academic Publishing AG & Co., Saarbrücken, Germany.
Noor, M. A. (2012). On general quasi variational inequalities. Journal of King Saud University - Science, 24, 81–88. https://doi.org/10.1016/j.jksus.2010.07.002
Noor, M. A., & Al-Said, E. (1999). Change of variable method for generalized complementarity problems. Journal of Optimization Theory and Applications, 100, 389–395. https://doi.org/10.1023/A:1021790404792
Noor, M. A., & Noor, K. I. (1999). Sensitivity analysis for quasi-variational inclusions. Journal of Mathematical Analysis and Applications, 236, 290–299. https://doi.org/10.1006/jmaa.1999.6424
Noor, M. A., & Noor, K. I. (2022). Some novel aspects of quasi variational inequalities. Earthline Journal of Mathematical Sciences, 10(1), 1–66. https://doi.org/10.34198/ejms.10122.166
Noor, M. A., & Noor, K. I. (2022). Dynamical system technique for solving quasi variational inequalities. U.P.B. Scientific Bulletin, Series A, 84(4), 55–66.
Noor, M. A., & Noor, K. I. (2024). Some new iterative schemes for solving general quasi variational inequalities. Le Matematiche, 79(2), 327–370.
Noor, M. A., & Noor, K. I. (2024). Some novel aspects and applications of Noor iterations and Noor orbits. Journal of Advanced Mathematical Studies, 17(3), 276–284.
Noor, M. A., & Noor, K. I. (2025). New iterative methods for inverse variational inequalities. Journal of Advanced Mathematical Studies, 18, in press.
Noor, M. A., Noor, K. I., & Khan, A. G. (2013). Some iterative schemes for solving extended general quasi variational inequalities. Applied Mathematics & Information Sciences, 7(3), 917–925. https://doi.org/10.12785/amis/070309
Noor, M. A., Noor, K. I., & Khan, A. G. (2015). Dynamical systems for quasi variational inequalities. Annals of Functional Analysis, 6(1), 193–209. https://doi.org/10.15352/afa/06-1-14
Noor, M. A., Noor, K. I., Khan, A. G., & Ghiura, A. (2010). Iterative algorithms for solving a class of quasi variational inequalities. U.P.B. Scientific Bulletin, Series A, 72(1), 2–13.
Noor, M. A., Noor, K. I., & Mohsen, B. B. (2021). Some new classes of general quasi variational inequalities. AIMS Mathematics, 6(6), 6406–6421. https://doi.org/10.3934/math.2021376
Noor, M. A., Noor, K. I., & Bnouhachem, A. (2021). Some new iterative methods for variational inequalities. Canadian Journal of Applied Mathematics, 3(1), 1–17.
Noor, M. A., Noor, K. I., & Rassias, M. T. (2020). New trends in general variational inequalities. Acta Applicandae Mathematicae, 170(1), 981–1046. https://doi.org/10.1007/s10440-020-00366-2
Noor, M. A., Noor, K. I., & Rassias, Th. M. (1993). Some aspects of variational inequalities. Journal of Computational and Applied Mathematics, 47, 285–312. https://doi.org/10.1016/0377-0427(93)90058-J
Noor, M. A., Noor, K. I., & Rassias, Th. M. (2010). Parametric general quasi variational inequalities. Mathematical Communications, 15(1), 205–212.
Noor, M. A., & Oettli, W. (1994). On general nonlinear complementarity problems and quasi equilibria. Le Matematiche, 49, 313–331.
Patriksson, M. (1998). Nonlinear Programming and Variational Inequalities: A Unified Approach. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4757-2991-7
Robinson, S. M. (1992). Normal maps induced by linear transformations. Mathematics of Operations Research, 17, 691–714. https://doi.org/10.1287/moor.17.3.691
Sanaullah, K., Ullah, S., & Aloraini, N. M. (2024). A self-adaptive three-step numerical scheme for variational inequalities. Axioms, 13, 57. https://doi.org/10.3390/axioms13010057
Shi, P. (1991). Equivalence of variational inequalities with Wiener-Hopf equations. Proceedings of the American Mathematical Society, 111, 339–346. https://doi.org/10.1090/S0002-9939-1991-1037224-3
Shehu, Y., Gibali, A., & Sagratella, S. (2020). Inertial projection-type method for solving quasi variational inequalities in real Hilbert space. Journal of Optimization Theory and Applications, 184, 877–894. https://doi.org/10.1007/s10957-019-01616-6
Stampacchia, G. (1964). Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus de l'Académie des Sciences de Paris, 258, 4413–4416.
Suantai, S., Noor, M. A., Kankam, K., & Cholamjiak, P. (2021). Novel forward-backward algorithms for optimization and applications to compressive sensing and image inpainting. Advances in Difference Equations, 2021, Article ID 265. https://doi.org/10.1186/s13662-021-03422-9
Trinh, T. Q., & Vuong, P. T. (2024). The projection algorithm for inverse quasi-variational inequalities with applications to traffic assignment and network equilibrium control problems. Optimization, 2024, 1–25. https://doi.org/10.1080/02331934.2024.2329788
Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings. SIAM Journal on Control and Optimization, 38, 431–446. https://doi.org/10.1137/S0363012998338806
Vuong, P. T., He, X., & Thong, D. V. (2021). Global exponential stability of a neural network for inverse variational inequalities. Journal of Optimization Theory and Applications, 190, 915–930. https://doi.org/10.1007/s10957-021-01915-x
Xia, Y. S., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural Networks, 13, 337–350. https://doi.org/10.1016/S0893-6080(00)00019-8
Xia, Y. S., & Wang, J. (2000). On the stability of globally projected dynamical systems. Journal of Optimization Theory and Applications, 106, 129–150. https://doi.org/10.1023/A:1004611224835
Youness, E. A. (1999). E-convex sets, E-convex functions and E-convex programming. Journal of Optimization Theory and Applications, 102(2), 439–450. https://doi.org/10.1023/A:1021792726715
Yadav, A., & Jha, K. (2016). Parrondo's paradox in the Noor logistic map. International Journal of Advanced Research in Engineering and Technology, 7(5), 01–06.
This work is licensed under a Creative Commons Attribution 4.0 International License.