General Dynamical Systems and Variational Inequalities
Abstract
In this paper, we introduce and consider a new second order dynamical system for solving general variational inequalities. Using the forward backward finite difference schemes, we suggest some new multi-step
iterative methods for solving the variational inequalities and their variants forms. Convergence analysis is investigated under certain mild conditions. We also use the change of variable method to establish the equivalence between the complementarity problems and the fixed point problems. The alternate formulation can exploited to consider the dynamical systems and study the stability properties of the solution. Since the variational inequalities are equivalent to the complementarity problems, our results can be used to develop new techniques for them. It is an interesting problem to compare these methods with other technique for solving variational inequalities and related optimizations for further research activities.
References
Al-Said, E. A., & Noor, M. A. (1999). An iterative scheme for generalized mildly nonlinear complementarity problems. Applied Mathematics Letters, 12, 7-11. https://doi.org/10.1016/S0893-9659(99)00071-3
Ashish, Rani, M., & Chugh, R. (2014). Julia sets and Mandelbrot sets in Noor orbit. Applied Mathematics and Computation, 228(1), 615-631. https://doi.org/10.1016/j.amc.2013.11.077
Ashish, Chugh, R., & Rani, M. (2021). Fractals and chaos in Noor orbit: a four-step feedback approach. Lap Lambert Academic Publishing, Saarbrücken, Germany.
Ashish, Cao, J., & Noor, M. A. (2023). Stabilization of fixed points in chaotic maps using Noor orbit with applications in cardiac arrhythmia. Journal of Applied Analysis and Computation, 13(5), 2452-2470. https://doi.org/10.11948/20220350
Bnouhachem, A., Noor, M. A., & Rassias, T. M. (2006). Three-step iterative algorithms for mixed variational inequalities. Applied Mathematics and Computation, 183, 436-446. https://doi.org/10.1016/j.amc.2006.05.086
Chairatsiripong, C., & Thianwan, T. (2022). Novel Noor iterations technique for solving nonlinear equations. AIMS Mathematics, 7(6), 10958-10976. https://doi.org/10.3934/math.2022612
Cho, S. Y., Shahid, A. A., Nazeer, W., & Kang, S. M. (2006). Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus, 5, 1843. https://doi.org/10.1186/s40064-016-3530-5
Cottle, R. W., Pang, J.-S., & Stone, R. E. (2009). The linear complementarity problem. SIAM Publications. https://doi.org/10.1137/1.9780898719000
Cristescu, G., & Lupsa, L. (2002). Non-connected convexities and applications. Kluwer Academic Publishers, Dordrecht, Holland. https://doi.org/10.1007/978-1-4615-0003-2
Cristescu, G., & Miauna, G. (2009). Shape properties of Noor's g-convex sets. Proceedings of the Twelfth Symposium of Mathematical Applications, Timisoara, Romania, 1-13.
Dupuis, P., & Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44, 7-42. https://doi.org/10.1007/BF02073589
Glowinski, R., Lions, J. L., & Tremolieres, R. (1981). Numerical analysis of variational inequalities. North-Holland, Amsterdam.
Glowinski, R., & Le Tallec, P. (1989). Augmented Lagrangian and operator splitting methods in nonlinear mechanics. SIAM, Philadelphia, Pennsylvania, USA. https://doi.org/10.1137/1.9781611970838
Khan, A. G., Noor, M. A., & Noor, K. I. (2015). Dynamical systems for general quasi variational inequalities. Annals of Functional Analysis, 6(1), 193-209. https://doi.org/10.15352/afa/06-1-14
Kinderlehrer, D., & Stampacchia, G. (2000). An introduction to variational inequalities and their applications. SIAM, Philadelphia, PA, USA. https://doi.org/10.1137/1.9780898719451
Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody, 12, 747-756.
Kwuni, Y. C., Shahid, A. A., Nazeer, W., Butt, S. I., Abbas, M., & Kang, S. M. (2019). Tricorns and multicorns in Noor orbit with s-convexity. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2928796
Lions, J., & Stampacchia, G. (1967). Variational inequalities. Communications on Pure and Applied Mathematics, 20, 493-519. https://doi.org/10.1002/cpa.3160200302
Nagurney, A., & Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Kluwer Academic Publishers, Boston, Dordrecht, London. https://doi.org/10.1007/978-1-4615-2301-7_2
Nammanee, K., Noor, M. A., & Suantai, S. (2006). Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications, 314, 320-334. https://doi.org/10.1016/j.jmaa.2005.03.094
Natarajan, S. K., & Negi, D. (2024). Green innovations utilizing fractal and power for solar panel optimization. In R. Sharma, G. Rana, & S. Agarwal (Eds.), Green Innovations for Industrial Development and Business Sustainability (pp. 146-152). CRC Press, Florida, Boca Raton, USA. https://doi.org/10.1201/9781003458944-10
Niculescu, C. P., & Persson, L. E. (2018). Convex functions and their applications. Springer-Verlag, New York. https://doi.org/10.1007/978-3-319-78337-6_1
Noor, M. A. (1975). On variational inequalities (PhD thesis). Brunel University, London, U.K.
Noor, M. A. (1998). The quasi-complementarity problem. Journal of Mathematical Analysis and Applications, 130, 344-353. https://doi.org/10.1016/0022-247X(88)90310-1
Noor, M. A. (1988). General variational inequalities. Applied Mathematics Letters, 1, 119-121. https://doi.org/10.1016/0893-9659(88)90054-7
Noor, M. A. (1988). Quasi variational inequalities. Applied Mathematics Letters, 1(4), 367-370. https://doi.org/10.1016/0893-9659(88)90152-8
Noor, M. A. (1988). Fixed point approach for complementarity problems. Journal of Mathematical Analysis and Applications, 33, 437-448. https://doi.org/10.1016/0022-247X(88)90413-1
Noor, M. A. (2000). Variational inequalities for fuzzy mappings (III). Fuzzy Sets and Systems, 110(1), 101-108. https://doi.org/10.1016/S0165-0114(98)00131-6
Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications, 251, 217-230. https://doi.org/10.1006/jmaa.2000.7042
Noor, M. A. (2002). A Wiener-Hopf dynamical system and variational inequalities. New Zealand Journal of Mathematics, 31, 173-182.
Noor, M. A. (2004). Some developments in general variational inequalities. Applied Mathematics and Computation, 152, 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
Noor, M. A. (2001). Three-step iterative algorithms for multivalued quasi variational inclusions. Journal of Mathematical Analysis and Applications, 255(2), 589-604. https://doi.org/10.1006/jmaa.2000.7298
Noor, M. A. (2009). Extended general variational inequalities. Applied Mathematics Letters, 22, 182-185. https://doi.org/10.1016/j.aml.2008.03.007
Noor, M. A. (2008). Differentiable non-convex functions and general variational inequalities. Applied Mathematics and Computation, 199(2), 623-630. https://doi.org/10.1016/j.amc.2007.10.023
Noor, M. A., & Al-Said, E. A. (1999). Change of variable method for generalized complementarity problems. Journal of Optimization Theory and Applications, 100(2), 389-395. https://doi.org/10.1023/A:1021790404792
Noor, M. A., & Noor, K. I. (2022). Dynamical system technique for solving quasi variational inequalities. U.P.B. Scientific Bulletin, Series A, 84(4), 55-66. https://doi.org/10.34198/ejms.10122.166
Noor, M. A., & Noot, K. I. (2023). Iterative schemes for solving general variational inequalities. Differential Equations and Applications, 15(2), 113-134. https://doi.org/10.7153/dea-2023-15-07
Noor, M. A., Noor, K. I., & Khan, A. G. (2015). Dynamical systems for quasi variational inequalities. Annals of Functional Analysis, 6(1), 193-209. https://doi.org/10.15352/afa/06-1-14
Noor, M. A., & Noor, K. I. (2024). Some novel aspects and applications of Noor iterations and Noor orbits. Journal of Advanced Mathematical Studies, 17(3), 276-284.
Noor, M. A., & Noor, K. I. (2025). General harmonic biconvex directional variational inequalities. Journal of Advanced Mathematical Studies, 18(2), (in press).
Noor, M. A., & Noor, K. I. (2025). Second-order dynamical systems technique for general variational inequalities. Journal of Advanced Mathematical Studies, 18(1), 1-17.
Noor, M. A., Noor, K. I., & Rassias, M. T. (2020). New trends in general variational inequalities. Acta Applicandae Mathematicae, 170(1), 981-1046. https://doi.org/10.1007/s10440-020-00366-2
Noor, M. A., Noor, K. I., & Rassias, Th. M. (1993). Some aspects of variational inequalities. Journal of Computational and Applied Mathematics, 47, 285-312. https://doi.org/10.1016/0377-0427(93)90058-J
Noor, M. A., & Oettlie, W. (1994). On general nonlinear complementarity problems. Le Matematiche, 49, 313-331.
Paimsang, S., Yambangwai, D., & Thianwan, T. (2024). A novel Noor iterative method of operators with property $(E)$ as concerns convex programming applicable in signal recovery and polynomiography. Mathematical Methods in the Applied Sciences, 1-18. https://doi.org/10.1002/mma.10083
Patriksson, M. (1998). Nonlinear programming and variational inequalities: a unified approach. Kluwer Academic Publishers, Dordrecht.
Phuengrattana, W., & Suantai, S. (2011). On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. Journal of Computational and Applied Mathematics, 235(9), 3006-3014. https://doi.org/10.1016/j.cam.2010.12.022
Rattanaseeha, K., Imnang, S., Inkrong, P., & Thianwan, T. (2023). Novel Noor iterative methods for mixed-type asymptotically nonexpansive mappings from the perspective of convex programming in hyperbolic spaces. International Journal of Innovative Computing Information and Control, 19(6), 1717-1734.
Sanaullah, K., Ullah, S., & Aloraini, N. M. (2024). A self-adaptive three-step numerical scheme for variational inequalities. Axioms, 13, 57. https://doi.org/10.3390/axioms13010057
Stampacchia, G. (1964). Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus de l'Académie des Sciences de Paris, 258, 4413-4416.
Suantai, S. (2005). Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications, 331, 506-517. https://doi.org/10.1016/j.jmaa.2005.03.002
Suantai, S., Noor, M. A., Kankam, K., & Cholamjiak, P. (2021). Novel forward-backward algorithms for optimization and applications to compressive sensing and image inpainting. Advances in Difference Equations, 2021, ID-265. https://doi.org/10.1186/s13662-021-03422-9
Tassaddiq, A. (2022). General escape criteria for the generation of fractals in extended Jungck-Noor orbit. Mathematics and Computers in Simulation, 196, 1-14. https://doi.org/10.1016/j.matcom.2022.01.003
Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings. SIAM Journal on Control and Optimization, 38, 431-446. https://doi.org/10.1137/S0363012998338806
Xia, Y. S., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural Networks, 13, 337-350. https://doi.org/10.1016/S0893-6080(00)00019-8
Xia, Y. S., & Wang, J. (2000). On the stability of globally projected dynamical systems. Journal of Optimization Theory and Applications, 106, 129-150. https://doi.org/10.1023/A:1004611224835
Yadav, A., & Jha, K. (2016). Parrondo's paradox in the Noor logistic map. International Journal of Advanced Research in Engineering Technology, 7(5), 1-6.
This work is licensed under a Creative Commons Attribution 4.0 International License.