Coefficient Estimates for Certain Subclasses of m-Fold Symmetric Bi-univalent Functions Associated with Pseudo-Starlike Functions
Abstract
In the present investigation, we introduce the subclasses $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\phi)$ and $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\delta)$ of \textit{m}-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the pseudo-starlike functions and defined in the open unit disk $\mathbb{U}$. Moreover, we obtain estimates on the initial coefficients $|b_{m+1}|$ and $|b_{2m+1}|$ for the functions belong to these subclasses and identified correlations with some of the earlier known classes.
References
R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
Ş. Altinkaya and S. Yalçin, On some subclasses of m-fold symmetric bi-univalent functions, 2018.arXiv:1603.01120
K. O. Babalola, On $lambda$-pseudo-starlike functions, J. Class. Anal. 3(2) (2013), 137-147. https://doi.org/10.7153/jca-03-12
D. A. Brannan and J. G. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London, 1980.
D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math. 31(2) (1986), 70-77.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 1983.
B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
A. W. Goodman, An invitation to the study of univalent and multivalent functions, Int. J. Math. Math. Sci. 2 (1979), 163-186. https://doi.org/10.1155/S016117127900017X
S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (2016), 522-525. https://doi.org/10.1016/j.joems.2016.03.007
S. B. Joshi and P. P. Yadav, Coefficient bounds for new subclasses of bi-univalent functions associated with pseudo-starlike functions, Ganita 69(1) (2019), 67-74.
W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329. https://doi.org/10.1090/S0002-9939-1989-0930244-7
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal. 32 (1969), 100-112. https://doi.org/10.1007/BF00247676
A. B. Patil and U. H. Naik, Bounds on initial coefficients for a new subclass of bi-univalent functions, New Trends Math. Sci. 6(1) (2018), 85-90. https://doi.org/10.20852/ntmsci.2018.248
Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269. https://doi.org/10.1307/mmj/1028998726
S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21(3) (2013), 190-193. https://doi.org/10.1016/j.joems.2013.02.007
T. G. Shaba, On some new subclass of bi-univalent functions associated with the Opoola differential operator, Open J. Math. Anal. 4(2) (2020), 74-79. https://doi.org/10.30538/psrp-oma2020.0064
T. G. Shaba, Certain new subclasses of m-fold symmetric bi-pseudo-starlike functions using Q-derivative operator, Open J. Math. Anal. 5(1) (2021), 42-50.
T. G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish Journal of Inequalities 4(2) (2020), 50-58.
T. G. Shaba, On some subclasses of bi-pseudo-starlike functions defined by Salagean differential operator, Asia Pac. J. Math. 8(6) (2021), 1-11. https://doi.org/10.28924/APJM/8-6
H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23(2) (2015), 242-246. https://doi.org/10.1016/j.joems.2014.04.002
H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. 41 (2015), 153-164. https://doi.org/10.17114/j.aua.2015.41.12
H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36(3) (2016), 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7(2) (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011
D. Styer and D. J. Wright, Results on bi-univalent functions, Proc. Amer. Math. Soc. 82(2) (1981), 243-248. https://doi.org/10.1090/S0002-9939-1981-0609659-5
D.-L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. 5 (1984), 559-568.
H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10(4) (2016), 1063-1092. https://doi.org/10.7153/jmi-10-85
This work is licensed under a Creative Commons Attribution 4.0 International License.