Subclass of p-valent Function with Negative Coefficients Applying Generalized Al-Oboudi Differential Operator
Abstract
In this paper we introduce a new subclass $\mathcal{R}^*(p,g,\psi,\varrho,\beta,\phi,\gamma,\zeta)$ of $p$-valent functions with negative coefficient defined by Hadamard product associated with a generalized differential operator. Radii of close-to-convexity, starlikeness and convexity of the class $\mathcal{R}^*(p,g,\psi,\varrho,\beta,\phi,\gamma,\zeta)$ are obtained. Also, distortion theorem, growth theorem and coefficient inequalities are established.
References
W. G. Atshan and R. H. Buti, Fractional calculus of class of univalent functions with negative coefficient defined by Hadamard product with Rafid operator, European Pure Appl. Math. 4(2) (2010), 162-173.
W. G. Atshan, A. J. M. Khalaf and M. M Mahdi, On a new subclass of univalent functions with negative coefficient defined by Hadamard product, European Journal of Scientific Research 119(3) (2014), 462-472.
H. E. Darwish, A. Y. Lashin and E. M. Madar, On certain classes of univalent functions with negative coefficients by defined convulation, Electronic Journal of Mathematical Analysis and Applications 4(1) (2016), 143-154.
J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeomtric function, Integral Transforms Spec. Funct. 14(1) (2003), 7-18. https://doi.org/10.1080/10652460304543
A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
T. O. Opoola, On a subclass of univalent function defined by generalized differential operator, Internat. J. Math. Anal. 11(18) (2017), 869-876. https://doi.org/10.12988/ijma.2017.7232
E. C. Godwin and T. O. Opoola, On a new subclass of univalent function with negative coefficients using a generalized different operator, Internat. J. Math. Anal. 11(18) (2017), 869-876. https://doi.org/10.12988/ijma.2017.7232
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
H. Silverman, Univalent functions with negative coefficient, Proc. Amer. Math. Soc. 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
H. Silverman, Integral means for univalent function with negative coefficients, Houston J. Math. 23(1) (1997), 169-174.
T. G. Shaba, A. A. Ibrahim and M. F. Oyedotun, A new subclass of analytic functions defined by Opoola differential operator, Advances in Mathematics Scientific Journal 9(7) (2020), 4829-4841. https://doi.org/10.37418/amsj.9.8.5
T. G. Shaba, On some new subclass of bi-univalent functions associated with Opoola differential operator, Open J. Math. Anal. {4}(2) (2020), 74-79. https://doi.org/10.30538/psrp-oma2020.0064
This work is licensed under a Creative Commons Attribution 4.0 International License.