Coupled Anti Multigroups: Some Properties
Abstract
Motivated by [1], the authors in [2] extended the notion of anti fuzzy groups to the multigroup context and studied some of their properties. In this paper we extend the work in a new direction termed coupled multigroup and obtain some new properties in this context. A conjecture concludes the paper.
References
References
R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets Syst. 35 (1990), 121-124. https://doi.org/10.1016/0165-0114(90)90025-2
P. A. Ejegwa, Concept of anti multigroups and its properties, Earthline J. Math. Sci. 4(1) (2020), 83-97. https://doi.org/10.34198/ejms.4120.8397
S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of bags and lists, Inform. Sci. 132 (2001), 241-254. https://doi.org/10.1016/S0020-0255(01)00066-4
A. Syropoulos, Mathematics of Multisets, Springer-Verlag Berlin Heidelberg, 2001, pp. 347-358. https://doi.org/10.1007/3-540-45523-X_17
D. Singh, A. M. Ibrahim, T. Yohanna and J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math. 37(2) (2007), 73-92.
P. A. Ejegwa and A. M. Ibrahim, Some group’s analogous results in multigroup setting, Ann. Fuzzy Math. Inform. 17(3) (2019), 231-245. https://doi.org/10.30948/afmi.2019.17.3.231
Sk. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Ann. Fuzzy Math. Inform. 6(3) (2013), 643-656.
P. A. Ejegwa, Upper and lower cuts of multigroups, Prajna Int. J. Math. Sci. Appl. 1(1) (2017), 19-26
P. A. Ejegwa and A. M. Ibrahim, Some properties of multigroups, Palestine Journal of Mathematics 9(1) (2020), 31-47.
This work is licensed under a Creative Commons Attribution 4.0 International License.