(α, β)-Reich Contraction Mapping Theorem in Multiplicative Metric Space
Abstract
In this paper, we introduce the notion of (α, β)-Reich contraction, and obtain a fixed point theorem for such mappings in the setting of multiplicative metric space. Moreover, we give a Corollary as a consequence of the main result.
Downloads
References
Banach, S. (1922). Sur les opérations dans les ensembles abstrait et leur application aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. https://doi.org/10.4064/fm-3-1-133-181
Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76. https://doi.org/10.2307/2316437
Kannan, R. (1969). Some results on fixed points. II. The American Mathematical Monthly, 76, 405-408. https://doi.org/10.1080/00029890.1969.12000228
Chatterjea, S. K. (1972). Fixed point theorems. Comptes Rendus de l'Académie Bulgare des Sciences, 25, 727-730.
Bashirov, A. E., Kurpınar, E. M., & Özyapıcı, A. (2008). Multiplicative calculus and its applications. Journal of Mathematical Analysis and Applications, 337, 36-48. https://doi.org/10.1016/j.jmaa.2007.03.081
Özavsar, M., & Çevikel, A. C. (2012). Fixed points of multiplicative contraction mappings on multiplicative metric spaces. arXiv:1205.513101 [math.GM].
Alizadeh, S., Moradlou, F., & Salimi, P. (2014). Some fixed point results for (α, β)-(4, 4) contractive mappings. Filomat, 28(3), 635-647. https://doi.org/10.2298/FIL1403635A
Yamaod, O., & Sintunavarat, W. (2014). Some fixed point results for generalized contraction mappings with cyclic (a, ẞ)-admissible mapping in multiplicative metric spaces. Journal of Inequalities and Applications, 2014, 488.
Reich, S. (1972). Fixed points of contractive functions. Bollettino della Unione Matematica Italiana, 5, 26-42.

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)
