Interpolative Berinde-Meir-Keeler Weak Contraction Mapping Theorem

  • Clement Boateng Ampadu 31 Carrolton Road, Boston, MA 02132-6303, USA
Keywords: interpolative Berinde weak operator, Meir-Keeler contraction, fixed point theorem

Abstract

In this paper, we introduce the notion of an interpolative Berinde-Meir-Keeler weak operator. Additionally, we provide an existence theorem for such operators in metric spaces. An example is given to illustrate the main result.

Downloads

Download data is not yet available.

References

Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28, 326-329. https://doi.org/10.1016/0022-247X(69)90031-6

Karapımar, E. (2018). Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and Its Applications, 2(2), 85-87. https://doi.org/10.31197/atnaa. 431135

Karapınar, E. (2021). Interpolative Kannan-Meir-Keeler type contraction. Advances in the Theory of Nonlinear Analysis and Its Applications, 5(4), 611-614. https://doi.org/10.31197/atnaa.989389

Ampadu, C. B. (2020). Some fixed point theory results for the interpolative Berinde weak operator. Earthline Journal of Mathematical Sciences, 4(2), 253-271. https://doi.org/10.34198/ejms.4220.253271

Published
2025-03-24
How to Cite
Ampadu, C. B. (2025). Interpolative Berinde-Meir-Keeler Weak Contraction Mapping Theorem. Earthline Journal of Mathematical Sciences, 15(3), 455-459. https://doi.org/10.34198/ejms.15325.455459
Section
Articles

Most read articles by the same author(s)

1 2 3 4 > >>