Banach Contraction Mapping Theorem in (α, β, c)-Interpolative Metric Space

  • Clement Boateng Ampadu 31 Carrolton Road, Boston, MA 02132-6303, USA
Keywords: interpolative metric space, Banach contraction, fixed point theorem

Abstract

In this paper we introduce the notion of (α, β, c)-interpolative metric space as an extension of (α, c)-interpolative metric space [Karapınar, E. (2023). An open discussion: Interpolative metric spaces. Advances in the Theory of Nonlinear Analysis and Its Applications, 7(5), 24-27]. The (α, β, c)-interpolative metric space can be regarded as a generalization of generalized metric space [Branciari, A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces.
Publicationes Mathematicae Debrecen, 57(1), 31-37]. Additionally, we prove the Banach contraction mapping theorem [Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, 133-181] in (α, β, c)-interpolative metric space.

References

Karapınar, E. (2023). An open discussion: Interpolative metric spaces. Advances in the Theory of Nonlinear Analysis and Its Applications, 7(5), 24-27.

Branciari, A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen, 57(1), 31-37. https://doi.org/10.5486/PMD.2000.2133

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, 133-181. https://doi.org/10.4064/fm-3-1-133-181

Published
2025-02-15
How to Cite
Ampadu, C. B. (2025). Banach Contraction Mapping Theorem in (α, β, c)-Interpolative Metric Space. Earthline Journal of Mathematical Sciences, 15(3), 313-317. https://doi.org/10.34198/ejms.15325.313317
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>