Effect of perturbations on dantrolene - A DFT treatise
Abstract
Dantrolene and an isomer of dantrolene which is obtained by a pair of centric perturbations (carbon to nitrogen replacement in N-N=CH moiety) are considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). Dantrolene is a skeletal muscle relaxant which interferes with the release of calcium ion from the sarcoplasmic reticulum.
Both of the isomeric structures of present interest have exothermic heat of formation values and favorable Gibbs free energy of formation values. They are electronically stable as well. The perturbation results in a more exothermic and more favorable isomer than dantrolene. It is also electronically more stable than the parent structure. Various quantum chemical data have been collected and discussed including IR and UV-VIS spectra.
References
Snyder, H.R., Davis, C.S., Bicker ton, R.K., & Holliday, R.P. (1967). 1-[5- Arylfurfurylidene)amino]hydantoins. A new class of muscle relaxants. J. Med. Chem., 10, 807-810. https://doi.org/10.1021/jm00317a011
Chyatte, S.B., Birdsong, J.H., & Bergman, B.A. (1971). The effects of dantrolene sodium on spasticity and motor performance in hemiplegia. Southern Med. J., 64(2), 180-185. https://doi.org/10.1097/00007611-197102000-00011
Chyatte, S.B., & Birdsong, J.H. (1971). The use of dantrolene sodium in disorders of the central nervous system. South. Med. J., 64(7), 830-834. PMID: 4933014. https://doi.org/10.1097/00007611-197107000-00011
Dykes, M.H. (1975). Evaluation of a muscle relaxant: dantrolene sodium (Dantrium). Journal of the American Medical Association, 231, 862-4. https://doi.org/10.1001/jama.1975.03240200058032
Krause, T., Gerbershagen, M.U., Fiege, M., Weißhorn, R., & Wappler, F. (2004). Dantrolene – A review of its pharmacology, therapeutic use and new developments. Anaesthesia, 59, 364-373. https://doi.org/10.1111/j.1365-2044.2004.03658.x
Miller, R.D. (1984). Skeletal muscle relaxants. In B.G. Katzung (Ed.), Basic and clinical pharmacology (pp. 268-275). Los Altos, California: Lange Medical Pub.
Britt, B.A. (1984). Dantrolene. Can. Anaesth. Soc. J., 31, 61-75. https://doi.org/10.1007/BF03011484
Kolb, M.E., Horne, M.L., & Martz, R. (1982). Dantrolene in human malignant hyperthermia. Anesthesiology, 56(4), 254-262. PMID: 7039419. https://doi.org/10.1097/00000542-198204000-00005
Grunau, B., Wiens, M., & Brubacher, J. (2010). Dantrolene in the treatment of MDMA related hyperpyrexia: A systematic review. Canadian Journal of Emergency Medicine, 12(5), 435-442. https://doi.org/10.1017/S1481803500012598
Hartmann, N., Pabel, S., Herting, J., Schatter, F., Renner, A., Gummert, J., Schotola, H., Danner, B.C., Maier, L.S., Frey, N., Hasenfuss, G., Fischer, T.H., & Sossalla, S. (2017). Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm, 14(3), 412-419. https://doi.org/10.1016/j.hrthm.2016.09.014
Inan, S., & Wei, H. (2010). The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth. Analg., 111(6), 1400-1410. https://doi.org/10.1213/ANE.0b013e3181f7181c
Gülçin, İ., Beydemir, Ş., & Büyükokuroğlu, M.E. (2004). In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biological and Pharmaceutical Bulletin, 27(5), 613-616. https://doi.org/10.1248/bpb.27.613
Choi, R.H., Koenig, X., & Launikonis, B.S. (2017). Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc. Natl. Acad. Sci. USA. 114(18), 4811-4815. https://doi.org/10.1073/pnas.1619835114
Cannon, S.C. (2017). Mind the magnesium, in dantrolene suppression of malignant hyperthermia. Biological Sciences, 114(18), 4576-4578. https://doi.org/10.1073/pnas.1704103114
Gaburjakova, J., & Gaburjakova, M. (2023). Molecular aspects implicated in dantrolene selectivity with respect to ryanodine receptor isoforms. Mol. Sci., 24, 5409-22. https://doi.org/10.3390/ijms24065409
Bolognino, I ., Giangregorio, N., Tonazzi, A., Martínez, A.L., Altomare, C.D., Loza, M.I., Sablone, S., Cellamare, S., & Catto, M. (2021). Synthesis and biological evaluation of dantrolene-like hydrazide and hydrazone analogues as multitarget agents for neurodegenerative diseases. Chem Med Chem., 16 (18), 2807-2816. https://doi.org/10.1002/cmdc.202100209
Türker, L. (2024). Geometrical isomers of dantrolene and their interactions with calcium and magnesium cations. Earthline Journal of Chemical Sciences 11(1), 1-18. https://doi.org/10.34198/ejcs.11124.001018
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Ferguson, L.N. (1969). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Lipinski, C.A., Lombardo, F., Dominy, B.W, & Feeney, P.J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev., 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019
Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today, 1, 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007
Lipinski, C.A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34-41. https://doi.org/10.1016/j.addr.2016.04.029
This work is licensed under a Creative Commons Attribution 4.0 International License.