Tautomers of Ethosuximide and their Interaction with Calcium Cation - A DFT Treatment
Abstract
Ethosuximide is an imide which is often used in the treatment of typical epilepsy. Ethosuximide affects neuronal excitability by blocking T-type calcium channels. It may exhibit 1,3-type tautomerism (amide-iminol type tautomerism). All those possible tautomeric forms are considered. Additionally, interactions of those tautomers with calcium cation have been investigated. All the calculations have been performed within the realm of density functional theory with the constraints of B3LYP/6-311++G(d,p) level. The tautomers and their composites with calcium cation are found to be electronically stable and thermodynamically favorable structures. Ethosuximide tautomers have relatively much lower Boltzman distributions compared to ethosuximide. However, they form electronically stable and thermodynamically favorable composites with calcium cation. Also some quantum chemical and spectral properties of those systems have been obtained and discussed.
References
Aicardi, J. (1986). Epilepsy in children. New York: Raven.
Browne, T.R., Dreifuss, F.E., Dyken, P.R., Goode, D.J., Penry, K.J., Porter, R.J., White, B.G., & White, P.T. (1975). Ethosuximide in the treatment of absence (petit mal) seizures. Neurology, 25, 515-524. https://doi.org/10.1212/WNL.25.6.515
Englander, R.N., Johnson, R.N., Brickley, J.J., & Hanna, G.R. (1977). Effects of antiepileptic drugs on thalamocortical excitability. Neurology, 27, 1134-1139. https://doi.org/10.1212/WNL.27.12.1134
Nowack, W.J., Johnson, R.N., Englander, R.N., & Hanna, G.R. (1979). Effects of valproate and ethosuximide on thalamocortical excitability. Neurology, 29, 96-99. https://doi.org/10.1212/WNL.29.1.96
Macdonald, R.L., & McLean, M.J. (1986). Anticonvulsant drugs: mechanisms of action. Adv. Neurol., 44, 713-736.
Coulter, D.A., Huguenard, J.R., & Prince, D.A. (1989). Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neuroscience Letters, 98(1), 74-8. https://doi.org/10.1016/0304-3940(89)90376-5
Coulter, D.A., Huguenard, J.R., & Prince, D.A. ( 1989). Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Annals of Neurology, 25(6), 582-93. https://doi.org/10.1002/ana.410250610
Coulter, D.A., Huguenard, J.R., & Prince, D.A. (1990). Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction. British Journal of Pharmacology, 100(4), 800-6. https://doi.org/10.1111/j.1476-5381.1990.tb14095.x
Kostyuk, P.G., Molokanova, E.A., Pronchuk, N.F., Savchenko, A.N., & Verkhratsky, A.N. (1992). Different action of ethosuximide on low- and high-threshold calcium currents in rat sensory neurons. Neuroscience, 51 (4), 755-8. https://doi.org/10.1016/0306-4522(92)90515-4
Tomson, T., & Villén, T. (1994). Ethosuximide enantiomers in pregnancy and lactation. Therapeutic Drug Monitoring, 16 (6), 621-623. https://doi.org/10.1097/00007691-199412000-00016
Osiecka-Drewniak, N., Juszyńska-Gałązka, E., Zając, W., & Chudoba, D. (2022). Vibrational dynamics of ethosuximide polymorphs. Infrared absorption and inelastic neutron scattering spectroscopy and model calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 279, 121468. https://doi.org/10.1016/j.saa.2022.121468
Osiecka, N., Juszyńska-Gałązka, E., Galewski, Z., Jaworska-Gołąb, T., Deptuch, A., & Massalska-Arodź, M. (2018). Insight into polymorphism of the ethosuximide (ETX). J. Therm. Anal. Cal., 133, 961-967. https://doi.org/10.1007/s10973-018-7142-x
Osiecka, N., Gałązka, M., Marzec, M., Zając, W., & Massalska-Arodź, M. (2019). Molecular dynamics in ethosuximide glass forming pharmaceutical as studied by dielectric relaxation spectroscopy. J. Pharm. Sci., 108, 102-108. https://doi.org/10.1016/j.xphs.2018.06.030
Serdaroğlu, G., & Ortiz, J.V. (2017). Ab initio calculations on some antiepileptic drugs such as phenytoin, phenbarbital, ethosuximide and carbamazepine. Struct. Chem., 28, 957-964. https://doi.org/10.1007/s11224-016-0898-3
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B., 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.
Reutov, O. (1970). Theoretical principles of organic chemistry, Moscow: Mir Pub.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry, Sausalito, California: University Science Books.
Ghose, A.K., Pritchett, A., & Crippen, G.M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. J. Computational Chemistry, 9(1), 80-90. https://doi.org/10.1002/jcc.540090111
Harris, D.C., & Bertolucci, M.D. (1978). Symmetry and spectroscopy. New York: Oxford.
Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.
This work is licensed under a Creative Commons Attribution 4.0 International License.