Effect of Aluminum on Nitroform - A DFT Study
Abstract
Trinitromethane (nitroform, NF) is an interesting substance. It acts as an oxidizer and forms salts/salt-like materials. In the present study, nitroform and aluminum interaction has been investigated within the limitations of density functional theory at the level of unrestricted B3LYP/6-311++G(d,p). The composites having formula of NF+Al and NF+2Al are considered. Since aluminum has an unpaired electron in the ground state, various multiplicities arise for the composites of present interest. Some geometrical, physico chemical, quantum chemical and spectral data have been obtained and discussed. The results indicate that the interaction between aluminum and nitroform is moderate in the case of NF+Al(d) which (has doublet multiplicity) and only some bond angle and length distortions happen. In the case of NF+2Al(s) composite, drastic effect of aluminum atom results in C-NO2 bond rupture of nitroform. On the other hand, the triplet state of NF+2Al, (NF+2Al(t)) perturbations caused by the aluminum is also moderate. In each case the aluminum atom acquires partial positive charge.
References
Urbanski, T. (1984). Chemistry and technology of explosives (Vol. 4). Oxford: Pergamon, UK. https://doi.org/10.1002/ijch.196400070
Mul, J.M., Gadiot, G.M.H.J.L., Meulenbrugge, J.J., Korting, P.A.O.G., Schnorhk, A.J., & Schoyer, H.F.R. (1992). New solid propellants based on energetic binders and HNF. AIAA 1992-3627. 28th Joint Propulsion Conference and Exhibit (July 1992). https://doi.org/10.2514/6.1992-3627
Brown, J.A. (1968). Stabilization of nitroform salts. U.S. Patent 3,378,595 (April 16, 1968).
Brown, J.A. (1968). Stabilization of nitroform salts. U.S. Patent 3,384,675 (May 21, 1968).
Louwers, J., & van der Heijden, A.E.D. (1999). Hydrazinium nitroformate. International patent application WO 99/58498.
Schoyer, H.F.R., Schnorhk, A.J., Korting, P.A.O.G., van Lit, P.J., Mul, J.M., Gadiot, G.M.H.J.L., & Meulenbrugge, J.J. (1995). High performance propellants based on hydrazinium nitroformate. Journal of Propulsion and Power, 2, 856-869. https://doi.org/10.2514/3.23911
Schoyer, H.F.R., Schnorhk, A.J., Korting, P.A.O.G., & van Lit, P.J. (1997). First experimental results of an HNF/A1/GAP solid rocket propellant. AIAA 1997-3131. 33rd Joint Propulsion Conference and Exhibit (July 1997). https://doi.org/10.2514/6.1997-3131
Low, G.M., & Haury, V.E. (1973). Hydrazinium nitroformate propellant with saturated hydrocarbon binder. U.S. Patent 3,708,359 (January 2, 1973).
Low, G.M., & Haury, V.E. (1973). Hydrazinium nitroformate propellant stabilized with nitroguanidine. U.S. Patent 3,658,608 (April 25, 1973).
Bryan, J.C., Burnett, M.N., & Gakh, A.A. (1998). Tetrabutylammonium and caesium salts of trinitromethane. Acta Cryst. C, 54, 1229-1233. https://doi.org/10.1107/S0108270198004491
Cioslowski, J., Mixon, S.T., & Fleischmann, E.D. (1991). Electronic structures of trifluoro-, tricyano-, and trinitromethane and their conjugate bases. J. Am. Chem. Soc., 113, 4751- 4755. https://doi.org/10.1021/ja00013a007
Ju, X-H., Xiao, J-J., & Xiao, H-M. (2003). DFT Study of the intermolecular interaction of hydrazinium nitroformate ion pair. Chemical Journal of Chinese Universities, 24(6), 1067-1071. http://www.cjcu.jlu.edu.cn/CN/Y2003/V24/I6/1067
Schoyer, H.F.R., Welland-Veltman, W.H.M., Louwers, J., Korting, P.A.O.G., van der Heijden, A.E.D.M., Keizers, H.L.J., & van den Berg, R.P. (2002). Overview of the development of hydrazinium nitroformate. Journal of Propulsion and Power, 18(1), 131-137. https://doi.org/10.2514/2.5908
Dendage, P.S., Sarwade, D.B., Asthana, S.N., & Singh, H. (2001). Hydrazinium nitroformate (HNF) and HNF based propellants: A review. Journal of Energetic Materials, 19(1), 41-78. https://doi.org/10.1080/07370650108219392
Dickens, B. (1967). Crystal structure of hydrazine nitroform [N2H5+C(NO2)3−]. Chemical Communications, 5, 246-247. https://doi.org/10.1039/C19670000246
Yan, C., Ding, P., Yang, H., Lu, C., & Cheng, G. (2016). New synthetic route of nitroform (NF) from acetyl acetone and study of the reaction mechanism. Ind. Eng. Chem. Res., 55(41), 11029-11034. https://doi.org/10.1021/acs.iecr.6b02049
Lu, H-Y., Li, J-R., Yang, D-L., Zhang, Q., & Shi, D-X. (2015). A novel synthesis of nitroform by the nitrolysis of cucurbituril. Chinese Chemical Letters, 26(3), 365-368. https://doi.org/10.1016/j.cclet.2014.12.019
Ledgard, J. (2007). The preparatory manual of explosives (3rd ed.). Jared Ledgard.
Davenas, A. (2003). Development of modern solid propellants. Journal of Propulsion and Power, 19(6), 1108-1128. https://doi.org/10.2514/2.6947
Schoyer, H.F.R., Korting, P.A.O.G., Veltmans, W.H.M., Louwers, J., van den Heijden, A.E.D.M., Keizers, H.L.J., & van der Berg, R.P. (2000). An overview of HNF and HNF-based propellants. AIAA 2000-3184. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (July 2000). https://doi.org/10.2514/6.2000-3184
He, Y., Zhang, H., & Lv, M. (2020). The strategy for improving the stability of nitroform derivatives-high-energetic oxidant based on hexanitroethane. J. Mol. Model., 26(7), 181(1-9). https://doi.org/10.1007/s00894-020-04451-z
Taylor, J. (1959). Solid propellant and exothermic compositions. London: George Newnes Ltd.
Keshavarz, M.H. (2005). New method for predicting detonation velocities of aluminized explosives. Combustion Flame, 142, 303-307. https://doi.org/10.1016/j.combustflame.2005.03.011
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.
SPARTAN 06 (2006). Wavefunction Inc.. Irvine CA, USA.
Göbel, M., & Klapötke, T.M. (2007). Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, diaminoguanidinium-, triaminoguanidinium- and melaminium nitroformate – synthesis, characterization and energetic properties. Z. Anorg. Allg. Chem., 633, 1006-1017. https://doi.org/10.1002/zaac.200700114
Türker, L. (2016). Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12(6), 423-445. https://doi.org/10.1016/j.dt.2016.09.002
Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/0737065050037432
This work is licensed under a Creative Commons Attribution 4.0 International License.