Charged Forms of 2,6-Dinitro-1-oxidopyridin-1-ium-3,5-diamine - A DFT Treatment
Abstract
The titled structure possesses many electron donating and attracting groups and should have push-pull type character. Its constitutional isomer, 2,6-diamino-3,5-dinitropyridine-N-oxide is a heat-resistant explosive material. In the present article, the charged forms of the titled structure have been investigated within the constraints of density functional theory at the level of UB3LYP/6-31++G(d,p). The calculations have revealed that it is electronically less stable than its isomer, 2,6-diamino-2,5-dinitropyridine-N-oxide. Some structural, electronic, quantum chemical and spectral behavior of ±1, ±2 type ions of it are considered presently.
References
Agrawal, J.P. (2010). High energy materials. Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527628803
He, Z-W., & Liu, Z-L. (2010). Performance of 2, 6-diamino-3, 5-dinitropyridine-1-oxide-based heat-resistance composite explosives. Hanneng Cailiao/Chinese Journal of Energetic Materials, 18(1), 97-101. https://doi.org/10.3969/j.issn.1006-9941.2010.01.024
Liu, H-N., Zheng, Y., Qiu, C-L., Wang, X-M., Li, W-B., & Cheng, B. (2014). Experimental study on jet impact sensitivity of a new explosive 2, 6-diamino-3, 5-dinitropyridine-1-oxide. Hanneng Cailiao/Chinese Journal of Energetic Materials, 22(3), 337-342. https://doi.org/10.3969/j.issn.1006-9941.2014.03.012
Cheng, J., Yao, Q-Z., & Liu, Z-L. (2009). Synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide. Hanneng Cailiao/Chinese Journal of Energetic Materials, 17(2), 166-168. https://doi.org/10.3969/j.issn.1006-9941.2009.02.009
He, Z.W., Zhou, S.Q., Ju, X.H., & Liu, Z-L. (2010). Computational investigation on 2,6-diamino-3,5-dinitropyridine-1-oxide crystal. Struct. Chem., 21(3), 651-656. https://doi.org/10.1007/s11224-010-9594-x
Li, X., Wang, B-L., & Lin, Q-H. (2016). Compatibility study of 2,6-diamino-3,5-dinitropyridine-1-oxide with some energetic materials. Cent. Eur. J. Energ. Mater., 13(4), 978-988. https://doi.org/10.22211/cejem/67312
Shi, W., Xia, M., Lei, W., & Wang, F. (2014). Solvent effect on the crystal morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 50, 71-77. https://doi.org/10.1016/j.jmgm.2014.03.005
Chavez, D.E. (2017). Energetic heterocyclic N-oxides. In O. Larionov (Eds.), Heterocyclic N-oxides. Topics in heterocyclic chemistry (Vol. 53). Cham (Switzerland): Springer. https://doi.org/10.1007/7081_2017_5
Hollins, R.A., Merwin, L.H., Nissan, R.A., & Wilson, W.S.J. (1996). Aminonitropyridines and their N-oxides. Heterocycl. Chem., 33, 895-904. https://doi.org/10.1002/jhet.5570330357
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A. R. (1997). Molecular modeling, Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization, New York: Wiley.
Kohn W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules, London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry, Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006), Wavefunction Inc., Irvine CA, USA.
Dewar, M. J. S. (1969). The molecular orbital theory of organic chemistry, New York: McGraw-Hill.
Dewar M. J. S., & Dougherty, R. C. (1975). The PMO theory of organic chemistry, New York: Plenum-Rosetta. https://doi.org/10.1007/978-1-4613-4404-9
Dmitriev, I. S. (1981). Molecules without chemical bonds, Moscow: Mir Pub.
Türker, L. (2011). Recent developments in the theory of explosive materials. In T. J. Janssen (Eds.), Explosive materials (Material science). Explosive materials, classification, composition and properties (pp. 1-52). New York: Nova Science Publishers, Inc., Hauppauge.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Pearson, R.G. (1997). Chemical hardness, Weinheim: Wiley-VCH. https://doi.org/10.1002/3527606173
This work is licensed under a Creative Commons Attribution 4.0 International License.