Interaction of TATP with Some Group II Metals - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TATP, triacetone triperoxide, explosive, beryllium, magnesium, calcium

Abstract

Triacetonetriperoxide (TATP) is a very sensitive organic peroxide type explosive which attracts the attention of terrorist groups due to its easy synthesis. The present density functional treatment considers the interaction of TATP molecule with certain group II metals at the level of B3LYP/6-311+G(d,p). Composite systems of TATP and Be, 2Be, Mg and Ca have been considered. Although, in the case of beryllium composites TATP molecule remains intact, in its Mg and Ca composites the rupture of the ring (even in 1:1 composite) occurs. Certain structural, electronic, quantum chemical and some spectral properties of the composites have been obtained and discussed.

References

Wolffenstein, R. (1895). Ueber die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd. Ber. Dtsch. Chem. Ges., 28(2), 2265-2269. https://doi.org/10.1002/cber.189502802208

Matyas, R., & Pachman, J. (2010). Study of TATP: Influence of reaction conditions on product composition. Propellants Explos. Pyrotech. 35, 31-37. https://doi.org/10.1002/prep.200800044

Jiang, H., Chu, G., Gong, H., & Qiao, Q. (1999). Tin chloride catalyzed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide. J. Chem. Res., 28(4), 288-289. https://doi.org/10.1039/A809955C

Stiasny, B.W. (2016). Investigation of organic peroxides and their properties as energetic materials. Ph.D. Dissertation. Ludwig Maximilian University of Munich. Munich, Germany.

Bulatov, V., Reany, O., Grinko, R., Schechter, I., & Keinan, E. (2013). Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism, Phys. Chem. Chem. Phys., 15, 6041-6048. https://doi.org/10.1039/c3cp44662j

Bali, M.S., Wallace, L., Day, A.I., & Armitt, D. (2014). Cyclic pentanone peroxide: Sensitiveness and suitability as a model for triacetone triperoxide. Journal of Forensic Sciences, 59, 936-942. https://doi.org/10.1111/1556-4029.12439

Hiyoshi, R.I., Nakamura, J., & Brill, T.B. (2007). Thermal decomposition of organic peroxides TATP and HMTD by T-Jump/FTIR spectroscopy. Propellants Explos. Pyrotech., 32(2), 127-134. https://doi.org/10.1002/prep.200700002

Sinditskii, V.P., Kolesov, V.I., Egorshev, V.Yu. Patrikeev, D.I., & Dorofeev, O.V. (2014). Thermochemistry of cyclic acetone peroxides. Thermochimica Acta, 585, 10-15. https://doi.org/10.1016/j.tca.2014.03.046

Oxley, J., Smith, J.L., Huang, J., & Luo, W. (2009). Destruction of peroxide explosives. Journal of Forensic Sciences, 54(5), 1029-1033. https://doi.org/10.1111/j.1556-4029.2009.01130.x

Oxley, J.C., Smith, J.L., & Chen, H. (2002). Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP). Propellants, Explosives, Pyrotechnics, 27, 209-216. https://doi.org/10.1002/1521-4087(200209)27:4<209::AID-PREP209>3.0.CO;2-J

Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., Alt, A., & Keinan, E. (2005). Decomposition of triacetone triperoxide is an entropic explosion. J. Am. Chem. Soc., 127(4), 1146-1159. https://doi.org/10.1021/ja0464903

Tsaplev, Y.B. (2012). Decomposition of cyclic acetone peroxides in acid media. Kinet. Catal. 53, 521-524. https://doi.org/10.1134/S0023158412050163

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem. 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem. 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular Modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Stark, J.G., & Wallace, H.G. (1982). Chemistry data book. London: J. Murray.

Atkins, P., & de Paula, J. (2002). Atkins’ physical chemistry. Oxford: Oxford Press.

Streitwieser, A. (1961). Molecular orbital theory for organic chemists. New York: Wiley.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Published
2021-10-13
How to Cite
Türker, L. (2021). Interaction of TATP with Some Group II Metals - A DFT Treatment. Earthline Journal of Chemical Sciences, 7(1), 1-16. https://doi.org/10.34198/ejcs.7122.116
Section
Articles