Interaction of NTO with Mg or/and Ca – DFT treatment
Abstract
Interaction of NTO with Mg or/and Ca atom(s) has been investigated within the constraints of density functional theory at the level of B3LYP/ 6-311++G(d,p). The results revealed that the composites considered are exothermic and favorable in terms of Hº and Gº values. Also they are electronically stable. Various structural, quantum chemical and spectral (UV-VIS) data are collected and discussed. The metal atoms, in each case, acquired positive charge(s) but no bond density exists between the components of the composites. The UV-VIS spectra shifts to higher wavelengths as the calcium content increases in the composites.
References
Yuxiang, O., Boren, C., Jiarong, L., Shuan, D., Jianjuan, L., & Huiping, J. (1994). Synthesis of nitro derivatives of triazoles. Heterocycles, 38, 1651-1664. https://doi.org/10.3987/REV-93-SR21
Rothgery, E.F., Audette, D.E., Wedlich, R.C., & Csejka, D.A. (1991). The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and accelerating rate calorimetry (ARC). Thermochim. Acta, 185(2), 235-243. https://doi.org/10.1016/0040-6031(91)80045-K
Beard, B.C., & Sharma, J. (1993). Early decomposition chemistry of NTO (3-nitro-1,2,4-triazol-5-one). J. Energ. Mater., 11(4-5), 325-343. https://doi.org/10.1080/07370659308019715
Xie, Y., Hu, R., Wang, X., Fu, X., & Zhunhua, C. (1991). Thermal behavior of 3-nitro-1,2,4-triazol-5-one and its salts. Thermochim. Acta, 189, 283-296. https://doi.org/10.1016/0040-6031(91)87126-H
Wang, Y.M., Chen, C., & Lin, S.T. (1999). Theoretical studies of the NTO unimolecular decomposition. J. Mol. Struct. (THEOCHEM,) 460, 79-102. https://doi.org/10.1016/s0166-1280(98)00308-x
Türker, L., & Atalar, T. (2006). Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J. Hazard Mat., A 137, 1333-1344. https://doi.org/10.1016/j.jhazmat.2006.05.015
Zbarskii, V.L., Kuz’min, V.V., & Yudin, N.V. (2004). Synthesis and properties of 1-nitro-4,5-dihydro-1H-1,2,4-triazol-5-one. Russ. J. Org. Chem., 40(7), 1069-1070. https://doi.org/10.1023/B:RUJO.0000045209.00477.56
Meredith, C., Russell, T.P., Mowrey, R.C., & McDonald, J.R. (1998). Decomposition of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): energetics associated with several proposed initial routes. J. Phys. Chem., A 102, 471-477. https://doi.org/10.1021/jp972602j
Türker, L. (2019). Nitramine derivatives of NTO - A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63. https://doi.org/10.34198/ejcs.1119.4563
Lee, K.Y., & Coburn, M.D. (1985). 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive (Report No. LA-10302-MS, Order No. DE86009787, 7 pp.).
Sorescu, D.C., Sutton, T.R.L., Thompson, D.L., Beardallm, D., & Wight, C.A. (1996). Theoretical and experimental studies of the structure and vibrational spectra of NTO. J. Mol. Struct., 84, 87-99. https://doi.org/10.1016/S0022-2860(96)09343-X
Türker, L. (2021). A composite of NTO and TNAZ - A DFT treatment. Earthline Journal of Chemical Sciences, 5(2), 261-274. https://doi.org/10.34198/ejcs.5221.261274
Türker, L. (2024). Tautomers of 2,4-dihydro-3H-1,2,4-triazol-3-one and their composites with NTO - A DFT Treatment. Earthline Journal of Chemical Sciences, 11(1), 121-140. https://doi.org/10.34198/ejcs.11124.121140
Zhao, Y., Chen, S.S., Jin, S.H., Li, Z.H., Zhang, X., Wang, L.T., Mao, Y.F., Guo, H.Y., Li, L. (2017). Heat effects of NTO synthesis in nitric acid solution. Journal of Thermal Analysis and Calorimetry, 128(1), 301-310. https://doi.org/10.1007/s10973-016-5912-x
Krzmarzick, M.J., Khatiwada, R., Olivares, C.I., Abrell, L., Sierra-Alvarez, R., Chorover, J., & Field, J.A. (2015). Biotransformation and degradation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one, by soil bacterial communities. Environmental Science & Technology, 49(9), 5681-8.
Deshmukh, M.B., Wagh, N.D., Sikder, A.K., Borse, A.U., & Dalal, D.S. (2014). Cyclodextrin nitrate ester/H2SO4 as a novel nitrating system for efficient synthesis of insensitive high explosive 3-nitro-1,2,4-triazol-5-one. Industrial & Engineering Chemistry Research, 53(50), 19375-19379. https://doi.org/10.1021/ie502555a
Sarangapani, R., Ramavat, V., Reddy, T.S., Patil, R.S., Gore, G.M., & Sikder, A.K. (2014). Effect of particle size and shape of NTO on micromeritic characteristics and its explosive formulations. Powder Technology, 253, 276-283. https://doi.org/10.1016/j.powtec.2013.11.029
Lasota, J., Chyłek, Z., & Trzciński, W. (2015). Methods for preparing spheroidal particles of 3-nitro-1,2,4-triazol-5-one (NTO). Central European Journal of Energetic Materials, 12(4), 769-783.
Hanafi,S., Trache,D., Abdous,S., Bensalem,Z., & Mezroua, A. (2019). 5-Nitro- 1,2,4-triazole-3-one. A review of recent advances. Chinese Journal of Energetic Materials, 27(4), 326-347. https://doi.org/10.11943/CJEM2018371
Türker, L. (2016). Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12(6), 423-445. https://doi.org/10.1016/j.dt.2016.09.002
Türker, L. (2020). 1,3,5-Triamino-2,4,6-trinitrobenzene and magnesium interaction - A DFT treatment. Earthline Journal of Chemical Sciences, 5(1), 175-190. https://doi.org/10.34198/ejcs.5121.175190
Russel, M.S. (2009). The chemistry of fireworks, Cambridge: RSC Pub.
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Stark, J.G., & Wallace, H.G. (2004). Chemistry data book. London: Hodder.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.