On Some Relationships of Symmetric Sums: $u^n+v^n+w^n+(u+v+w)^n=k(u+v+w)(x^{n-1}+y^{n-1}+z^{n-1})$
Abstract
Let $u, v, w, x, y, k$ and $z$ be any integers and suppose that $n$ is a given exponent. This study focuses on the interplay between sums of four powers and product of symmetric sums. In particular, the Diophantine equation $u^n+v^n+w^n+(u+v+w)^n=k(u+v+w)(x^{n-1}+y^{n-1}+z^{n-1})$ is introduced and partially characterized within the set of integers for exponent $n=3$. Moreover, this research formulates a conjecture for the equation presented in the title.
References
Abu Muriefah, F. S. (2006). On the Diophantine equation $x^2+5^{2k}=y^n$. Demonstratio Mathematica, 39(2), 285-289. https://doi.org/10.1515/dema-2006-0206
Abu Muriefah, F. S., Luca, F., Siksek, S., & Tengely, S. (2009). On the Diophantine equation $x^2+C=2y^n$. International Journal of Number Theory, 5, 1117-1128. https://doi.org/10.1142/S1793042109002572
Arif, S. A., & Abu Muriefah, F. S. (1997). On the Diophantine equation $x^2+2^{k}=y^n$. International Journal of Mathematics and Mathematical Sciences, 20, 299-304. https://doi.org/10.1155/s0161171297000409
Arif, S. A., & Abu Muriefah, F. S. (1998). The Diophantine equation $x^2+3^{m}=y^n$. International Journal of Mathematics and Mathematical Sciences, 21, 619-620. https://doi.org/10.1155/s0161171298000866
Arif, S. A., & Abu Muriefah, F. S. (2002). On the Diophantine equation $x^2+q^{2k+1}=y^n$. Journal of Number Theory, 95, 95-100. https://doi.org/10.1006/jnth.2001.2750
Abu Muriefah, F. S., & Arif, S. A. (2001). The Diophantine equation $x^2+q^{2k}=y^n$. The Arabian Journal for Science and Engineering, 26, 53-62.
Bugeaud, Y. (1997). On the Diophantine equation $x^2-p^{m}=pm y^n$. Acta Arithmetica, 80, 213-223. https://doi.org/10.4064/aa-80-3-213-223
Abu Muriefah, F. S., & Bugeaud, Y. (2006). The Diophantine equation $x^2+c= y^n$. Revista Colombiana de Matemáticas, 40, 31-37.
David Christopher, A. (2016). A partition-theoretic proof of Fermat's two squares theorem. Discrete Mathematics, 339(4), 1410-1411. https://doi.org/10.1016/j.disc.2015.12.002
Mude, L. H., Ndung'u, K. J., & Kayiita, Z. K. (2024). On sums of squares involving integer sequence: $sum_{r=1}^{n} w^{2}_{r}+frac{n}{3}d^2=3(frac{nd^2}{3}+ sum_{r=1}^{frac{n}{3}} w^{2}_{3r-1})$. Journal of Advances in Mathematics and Computer Science, 39(7), 1-6. https://doi.org/10.9734/jamcs/2024/v39i71906
Mude, L. H. (2024). Analytical solution of some higher degree equation via radicals. Journal of Advances in Mathematics and Computer Science, 39(3), 20-28. https://doi.org/10.9734/JAMCS/2024/v39i31872
Mude, L. H. (2022). Some formulae for integer sums of two squares. Journal of Advances in Mathematics and Computer Science, 37(4), 53-57. https://doi.org/10.9734/jamcs/2022/v37i430448
Mude, L. H., Kayiita, Z. K., & Ndung'u, K. J. (2023). Some generalized formula for sums of cubes. Journal of Advances in Mathematics and Computer Science, 38(8), 47-52. https://doi.org/10.9734/jamcs/2023/v38i81789
Mude, L. H. (2024). On some mixed polynomial exponential Diophantine equation: $alpha^n+beta^n+a(alpha^s pm beta^s)^m+D=r(u^k+v^k+v^k)$ with $alpha$ and $beta$ consecutive. Journal of Advances in Mathematics and Computer Science, 39(10), 11-17. https://doi.org/10.9734/jamcs/2024/v39i101931
Kimtai, B. S., & Mude, L. H. (2023). On generalized sum of six, seven and nine cubes. Science Mundi, 3(1), 135-142. https://doi.org/10.51867/scimundi.3.1.14
Mochimaru, Y. (2005). Solution of sextic equations. International Journal of Pure and Applied Mathematics, 23(4), 575-583.
Najman, F. (2010). The Diophantine equation $x^4pm y^4=iz^2$ in Gaussian integers. American Mathematical Monthly, 117(7), 637-641. https://doi.org/10.4169/000298910x496769
Najman, F. (2011). Torsion of elliptic curves over quadratic cyclotomic fields. Mathematical Journal of Okayama University, 53, 75-82.
Cai, Y. (2016). Waring-Goldbach problem: two squares and higher powers. Journal de Théorie des Nombres de Bordeaux, 28, 791-810. https://doi.org/10.5802/jtnb.964
Ruffini, P. (1799). Teoria Generale delle Equazioni, in cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al quarto. Book on Demand Ltd.
This work is licensed under a Creative Commons Attribution 4.0 International License.