On Some Relationships of Symmetric Sums: $u^n+v^n+w^n+(u+v+w)^n=k(u+v+w)(x^{n-1}+y^{n-1}+z^{n-1})$

  • Lao Hussein Mude Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
Keywords: cubic equation, symmetric sums

Abstract

Let $u, v, w, x, y, k$ and $z$ be any integers and suppose that $n$ is a given exponent. This study focuses on the interplay between sums of four powers and product of symmetric sums. In particular, the Diophantine equation $u^n+v^n+w^n+(u+v+w)^n=k(u+v+w)(x^{n-1}+y^{n-1}+z^{n-1})$ is introduced and partially characterized within the set of integers for exponent $n=3$. Moreover, this research formulates a conjecture for the equation presented in the title.

References

Abu Muriefah, F. S. (2006). On the Diophantine equation $x^2+5^{2k}=y^n$. Demonstratio Mathematica, 39(2), 285-289. https://doi.org/10.1515/dema-2006-0206

Abu Muriefah, F. S., Luca, F., Siksek, S., & Tengely, S. (2009). On the Diophantine equation $x^2+C=2y^n$. International Journal of Number Theory, 5, 1117-1128. https://doi.org/10.1142/S1793042109002572

Arif, S. A., & Abu Muriefah, F. S. (1997). On the Diophantine equation $x^2+2^{k}=y^n$. International Journal of Mathematics and Mathematical Sciences, 20, 299-304. https://doi.org/10.1155/s0161171297000409

Arif, S. A., & Abu Muriefah, F. S. (1998). The Diophantine equation $x^2+3^{m}=y^n$. International Journal of Mathematics and Mathematical Sciences, 21, 619-620. https://doi.org/10.1155/s0161171298000866

Arif, S. A., & Abu Muriefah, F. S. (2002). On the Diophantine equation $x^2+q^{2k+1}=y^n$. Journal of Number Theory, 95, 95-100. https://doi.org/10.1006/jnth.2001.2750

Abu Muriefah, F. S., & Arif, S. A. (2001). The Diophantine equation $x^2+q^{2k}=y^n$. The Arabian Journal for Science and Engineering, 26, 53-62.

Bugeaud, Y. (1997). On the Diophantine equation $x^2-p^{m}=pm y^n$. Acta Arithmetica, 80, 213-223. https://doi.org/10.4064/aa-80-3-213-223

Abu Muriefah, F. S., & Bugeaud, Y. (2006). The Diophantine equation $x^2+c= y^n$. Revista Colombiana de Matemáticas, 40, 31-37.

David Christopher, A. (2016). A partition-theoretic proof of Fermat's two squares theorem. Discrete Mathematics, 339(4), 1410-1411. https://doi.org/10.1016/j.disc.2015.12.002

Mude, L. H., Ndung'u, K. J., & Kayiita, Z. K. (2024). On sums of squares involving integer sequence: $sum_{r=1}^{n} w^{2}_{r}+frac{n}{3}d^2=3(frac{nd^2}{3}+ sum_{r=1}^{frac{n}{3}} w^{2}_{3r-1})$. Journal of Advances in Mathematics and Computer Science, 39(7), 1-6. https://doi.org/10.9734/jamcs/2024/v39i71906

Mude, L. H. (2024). Analytical solution of some higher degree equation via radicals. Journal of Advances in Mathematics and Computer Science, 39(3), 20-28. https://doi.org/10.9734/JAMCS/2024/v39i31872

Mude, L. H. (2022). Some formulae for integer sums of two squares. Journal of Advances in Mathematics and Computer Science, 37(4), 53-57. https://doi.org/10.9734/jamcs/2022/v37i430448

Mude, L. H., Kayiita, Z. K., & Ndung'u, K. J. (2023). Some generalized formula for sums of cubes. Journal of Advances in Mathematics and Computer Science, 38(8), 47-52. https://doi.org/10.9734/jamcs/2023/v38i81789

Mude, L. H. (2024). On some mixed polynomial exponential Diophantine equation: $alpha^n+beta^n+a(alpha^s pm beta^s)^m+D=r(u^k+v^k+v^k)$ with $alpha$ and $beta$ consecutive. Journal of Advances in Mathematics and Computer Science, 39(10), 11-17. https://doi.org/10.9734/jamcs/2024/v39i101931

Kimtai, B. S., & Mude, L. H. (2023). On generalized sum of six, seven and nine cubes. Science Mundi, 3(1), 135-142. https://doi.org/10.51867/scimundi.3.1.14

Mochimaru, Y. (2005). Solution of sextic equations. International Journal of Pure and Applied Mathematics, 23(4), 575-583.

Najman, F. (2010). The Diophantine equation $x^4pm y^4=iz^2$ in Gaussian integers. American Mathematical Monthly, 117(7), 637-641. https://doi.org/10.4169/000298910x496769

Najman, F. (2011). Torsion of elliptic curves over quadratic cyclotomic fields. Mathematical Journal of Okayama University, 53, 75-82.

Cai, Y. (2016). Waring-Goldbach problem: two squares and higher powers. Journal de Théorie des Nombres de Bordeaux, 28, 791-810. https://doi.org/10.5802/jtnb.964

Ruffini, P. (1799). Teoria Generale delle Equazioni, in cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al quarto. Book on Demand Ltd.

Published
2024-12-30
How to Cite
Mude, L. H. (2024). On Some Relationships of Symmetric Sums: $u^n+v^n+w^n+(u+v+w)^n=k(u+v+w)(x^{n-1}+y^{n-1}+z^{n-1})$. Earthline Journal of Mathematical Sciences, 15(2), 181-186. https://doi.org/10.34198/ejms.15225.181186
Section
Articles