On Counting the Number of Cyclic Codes of Length n Over Prime Fields

  • Pancras Onyango Ongili Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
  • Lao Hussein Mude Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
  • Zachary Kayiita Kaunda Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
  • Kennedy Karanu Kibe Department of Pure and Applied Sciences, Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya
Keywords: cyclic code enumeration, prime fields GF(p), cyclic code enumeration index \mathcal{N}, cyclotomic cosets over GF(p), irreducible polynomials factorization, counting cyclic codes

Abstract

Cyclic codes are a cornerstone of coding theory. Many studies have extensively explored specific finite prime fields, GF(p). However, a generalized framework for GF(p) remains unexplored. Previous research has enumerated cyclic codes over GF(13), GF(17), GF(19), GF(23), GF(31), and GF(37), deriving significant findings for special cases where n assumes specific forms like $n = p^m$ or $n = a^m \cdot p^m$. Despite these advances, existing studies are often restricted to individual prime fields and lack a unified. framework applicable across all GF(p). This research develops a mathematical framework for counting cyclic codes over any prime field GF(p). The methodology involves the use of rigorous mathematical derivations and proofs to establish the relationship between number of cyclic codes, cyclotomic cosets and the factorization of $x^n - 1$ into irreducible polynomials over GF(p). This framework provides a comprehensive understanding of how the structures of n and p influence the number of cyclic codes. The study concludes that the number of cyclic codes, $\mathcal{N}$, over the prime fields can be expressed as $\mathcal{N} = (p^y + 1)^C$, where C is derived from the number of cyclotomic cosets modulo $k \forall n = k \cdot p^y $. This work contributes to the efficient design of error-correcting codes, strengthens the theoretical foundation for secure communication systems, and bridges theoretical concepts of pure mathematics.

References

Aguilar-Melchor, C., Blazy, O., Deneuville, J. C., Gaborit, P., & Zémor, G. (2018). Efficient encryption from random quasi-cyclic codes. IEEE Transactions on Information Theory, 64(5), 3927-3943. https://doi.org/10.1109/TIT.2018.2804444

Almazrouei, K., & Alnajjar, K. A. (2024). Error-correcting codes in communication systems. 2024 International Wireless Communications and Mobile Computing (IWCMC), 1-6. https://doi.org/10.1109/IWCMC61514.2024.10592361

Ball, S. (2020). Finite fields. A Course in Algebraic Error-Correcting Codes, 17-27. https://doi.org/10.1007/978-3-030-41153-4_2

Baylis, D. J. (2018). Error Correcting Codes: A Mathematical Introduction. Routledge.

Childs, L. N. (2019). Cryptology and Error Correction. Springer International Publishing.

Dumas, J. G., Roch, J. L., Tannier, E., & Varrette, S. (2015). Foundations of Coding: Compression, Encryption, Error Correction. John Wiley & Sons. https://doi.org/10.1002/9781119005940

Hussein, L., Kivunge, B., Kimani, P., & Muthoka, G. (2018). On the number of cyclotomic cosets and cyclic codes over $ Z_{13} $. International Journal of Scientific Research and Innovative Technology, 5(6), 58-68.

Hussein, L., Kivunge, B., Muthoka, G., & Mwangi, P. (2015). Enumeration of cyclic codes over GF(17). International Journal of Scientific Research and Innovative Technology, 2(5), 103-111.

Maganga, B. M., & Joash, M. N. (2017). Enumeration of cyclic codes over GF(19). Kenyatta University.

Mesnager, S. (2021). Linear codes from functions. In Concise Encyclopedia of Coding Theory, 463-526. Chapman and Hall/CRC.

Ondiany, J. J. O., Karieko, O. R., Mude, L. H., & Monari, F. N. (2024). On the number of cyclic codes over $ Z_{31} $. Journal of Advances in Mathematics and Computer Science, 39(7), 55-69. https://doi.org/10.9734/jamcs/2024/v39i71912

Ongili, P., Mude, L. H., & Ndung'u, K. J. (2024). On the generalization of the number of cyclic codes over the prime field GF(37). Journal of Advances in Mathematics and Computer Science, 39(6), 27-42. https://doi.org/10.9734/JAMCS/2024/v39i61899

Runji, F. M. (2014). Enumeration of cyclic codes over GF (5). Express Journal, 1(6). http://express-journal.com/pdf/june14issue6/enumerationofcycliccodesovergf(5).pdf

Simatwo, K. B., Mati, R. F., & Karieko, O. R. (2023). Enumeration of cyclic codes over GF(23). Journal of Advances in Mathematics and Computer Science, 38(9), 194-206. https://doi.org/10.9734/jamcs/2023/v38i91815

Singh, M., & Deepak. (2025). The set of representatives and explicit factorization of $ x^n - 1 $ over finite fields. Journal of Algebra and Its Applications, 24(07), 2550170. https://doi.org/10.1142/S0219498825501701

Tinnirello, C. (2016). Cyclic Codes: Low-Weight Codewords and Locators.

van Zanten, A. J. (2019). Primitive idempotent tables of cyclic and constacyclic codes. Designs, Codes and Cryptography, 87, 1199-1225. https://doi.org/10.1007/s10623-018-0495-0

Vega, G. (2021). Explicit factorization of some period polynomials. In Arithmetic of Finite Fields: 8th International Workshop, WAIFI 2020, Rennes, France, July 6-8, 2020, Revised Selected and Invited Papers, 222-233. Springer International Publishing. https://doi.org/10.1007/978-3-030-68869-1_13

Zhu, L., Liu, J., & Wu, H. (2024). Explicit representatives and sizes of cyclotomic cosets and their application to cyclic codes over finite fields. arXiv preprint arXiv:2410.12122.

Zhu, L., Liu, J., & Wu, H. (2024). Cyclotomic system and their arithmetic. arXiv preprint arXiv:2412.12455.

Published
2025-03-17
How to Cite
Ongili, P. O., Mude, L. H., Kaunda, Z. K., & Kibe, K. K. (2025). On Counting the Number of Cyclic Codes of Length n Over Prime Fields. Earthline Journal of Mathematical Sciences, 15(3), 419-435. https://doi.org/10.34198/ejms.15325.419435
Section
Articles