The Interesting Characterizations of Some Solitons in Lorentzian Para-Kenmotsu Manifolds

  • Tuğba Mert Department of Mathematics, Faculty of Science, University of Sivas Cumhuriyet, 58140, Sivas, Turkey
  • Mehmet Atçeken Department of Mathematics, Faculty of Art and Science, University of Aksaray, 68100, Aksaray, Turkey
Keywords: Lorentzian manifold, $\eta$-Ricci soliton, conformal Ricci soliton, $\eta $-Ricci Bourguignon soliton

Abstract

In this article, we have investigated some special solitons in Lorentz para-Kenmotsu manifolds. We have studied in detail some important solitons such as almost $\eta$-Ricci soliton, conformal Ricci soliton and $\eta$-Ricci Bourguignon solitons in Lorentz para-Kenmotsu manifolds. While examining particularly some important symmetry conditions of Lorentz para-Kenmotsu manifolds, we have obtained characterizations based on both certain special solitons and the generalized $\ \mathcal{B}$-curvature tensor, which is the generalization of quasi-conformal, Weyl-conformal, concircular and conharmonic curvature tensors.

References

Sinha, B.B., & Sai Prasad, K.L. (1995). A class of almost para contact metric manifold. Bulletin of the Calcutta Mathematical Society, 87, 307-312.

Haseeb, A., & Prasad, R. (2021). Certain results on Lorentzian para-Kenmotsu manifolds. Bulletin of Parana's Mathematical Society, 39(3), 201-220. https://doi.org/10.5269/bspm.40607

Prasad, R., Haseeb, A., & Gautam, U.K. (2021). On φ-semisymmetric LP-Kenmotsu manifolds with a QSNM-connection admitting Ricci solitons. Kragujevac Journal of Mathematics, 45(5), 815-827. https://doi.org/10.46793/KgJMat2105.815P

Atçeken, M. (2022). Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds. Korean Journal of Mathematics, 30(1), 175-185.

Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric applications. http://arXiv.org/abs/math/0211159

Perelman, G. (2003). Ricci flow with surgery on three manifolds. http://arXiv.org/abs/math/0303109

Sharma, R. (2008). Certain results on k-contact and (k,μ)-contact manifolds. Journal of Geometry, 89, 138-147. https://doi.org/10.1007/s00022-008-2004-5

Ashoka, S. R., Bagewadi, C. S., & Ingalahalli, G. (2013). Certain results on Ricci Solitons in α-Sasakian manifolds. Hindawi Publishing Corporation Geometry, Article ID 573925, 4 pages. https://doi.org/10.1155/2013/573925

Ashoka, S. R., Bagewadi, C. S., & Ingalahalli, G. (2014). A geometry on Ricci solitons in (LCS)n-manifolds. Differential Geometry - Dynamical Systems, 16, 50-62.

Bagewadi, C. S., & Ingalahalli, G. (2012). Ricci solitons in Lorentzian-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyíregyháziensi, 28, 59-68.

Ingalahalli, G., & Bagewadi, C. S. (2012). Ricci solitons in α-Sasakian manifolds. ISRN Geometry, Article ID 421384, 13 pages. https://doi.org/10.5402/2012/421384

Bejan, C. L., & Crasmareanu, M. (2011). Ricci solitons in manifolds with quasi-contact curvature. Publicationes Mathematicae Debrecen, 78, 235-243. https://doi.org/10.5486/PMD.2011.4797

Blaga, A. M. (2015). η-Ricci solitons on para-Kenmotsu manifolds. Balkan Journal of Geometry and its Applications, 20, 1-13.

Chandra, S., Hui, S. K., & Shaikh, A. A. (2015). Second order parallel tensors and Ricci solitons on (LCS)n-manifolds. Communications of the Korean Mathematical Society, 30, 123-130. https://doi.org/10.4134/CKMS.2015.30.2.123

Chen, B. Y., & Deshmukh, S. (2014). Geometry of compact shrinking Ricci solitons. Balkan Journal of Geometry and its Applications, 19, 13-21.

Deshmukh, S., Al-Sodais, H., & Alodan, H. (2011). A note on Ricci solitons. Balkan Journal of Geometry and its Applications, 16, 48-55.

He, C., & Zhu, M. (2011). Ricci solitons on Sasakian manifolds. http://arxiv.org/abs/1109.4407v2

Atçeken, M., Mert, T., & Uygun, P. (2022). Ricci-Pseudosymmetric (LCS)n-manifolds admitting almost η-Ricci solitons. Asian Journal of Mathematics and Computer Research, 29(2), 23-32. https://doi.org/10.56557/ajomcor/2022/v29i27900

Nagaraja, H., & Premalatta, C. R. (2012). Ricci solitons in Kenmotsu manifolds. Journal of Mathematical Analysis, 3(2), 18-24.

Tripathi, M. M. (2008). Ricci solitons in contact metric manifolds. http://arxiv.org/abs/0801.4221v1

Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2017). The Ricci-Bourguignon flow. Pacific Journal of Mathematics, 287, 337-370. https://doi.org/10.2140/pjm.2017.287.337

Catino, G., & Mazzieri, L. (2016). Gradient Einstein solitons. Nonlinear Analysis, 132, 66-94. https://doi.org/10.1016/j.na.2015.10.021

Hamilton, R. S. (1988). The Ricci flow on surfaces. Contemporary Mathematics, 71, 237-262. https://doi.org/10.1090/conm/071/954419

Aubin, T. (1970). Matrices Riemanniennes et courbure. Journal of Differential Geometry, 4, 383-424. https://doi.org/10.4310/jdg/1214429638

De, U. C., Chaubey, S. K., & Suh, Y. J. (2020). A note on almost co-Kähler manifolds. International Journal of Geometric Methods in Modern Physics, 17, 2050153.

Siddiqi, M. D. (2019). Ricci ρ-soliton and geometrical structure in a dust fluid and viscous fluid spacetime. Bulgarian Journal of Physics, 46, 163-173.

Venkatesha, & Naik, D. M. (2017). Certain results on K-Paracontact and para-Sasakian manifolds. Journal of Geometry, 108, 939-952. https://doi.org/10.1007/s00022-017-0387-x

Shaikh, A. A., & Kundu, H. (2014). On equivalency of various geometric structures. Journal of Geometry, 105, 139-165. https://doi.org/10.1007/s00022-013-0200-4

Cho, J. T., & Kimura, M. (2009). Ricci solitons and real hypersurfaces in a complex space form. Tohoku Mathematical Journal, 61(2), 205-212. https://doi.org/10.2748/tmj/1245849443

Published
2024-10-17
How to Cite
Mert, T., & Atçeken, M. (2024). The Interesting Characterizations of Some Solitons in Lorentzian Para-Kenmotsu Manifolds. Earthline Journal of Mathematical Sciences, 14(6), 1239-1257. https://doi.org/10.34198/ejms.14624.12391257
Section
Articles